98%
921
2 minutes
20
A shift in practice by anaesthetists away from anaesthetic gases with high global warming potential towards lower emission techniques (e.g. total intravenous anaesthesia) could result in significant carbon savings for the health system. The purpose of this qualitative interview study was to understand anaesthetists' perspectives on the carbon footprint of anaesthesia, and views on shifting practice towards more environmentally sustainable options. Anaesthetists were recruited from four hospitals in Western Sydney, Australia. Data were organised according to the capability-opportunity-motivation model of behaviour change. Twenty-eight anaesthetists were interviewed (July-September 2021). Participants' age ranged from 29 to 62 years (mean 43 years), 39% were female, and half had completed their anaesthesia training between 2010 and 2019. Challenges to the wider use of greener anaesthetic agents were identified across all components of the capability-opportunity-motivation model: capability (gaps in clinician skills and experience, uncertainty regarding research evidence); opportunity (norms, time, and resource pressures); and motivation (beliefs, habits, responsibility and guilt). Suggestions for encouraging a shift to more environmentally friendly anaesthesia included access to education and training, implementing guidelines and audit/feedback models, environmental restructuring, improving resource availability, reducing low value care, and building the research evidence base on the safety of alternative agents and their impacts on patient outcomes. We identified opportunities and challenges to reducing the carbon footprint of anaesthesia in Australian hospitals by way of system-level and individual behavioural change. Our findings will be used to inform the development of communication and behavioural interventions aiming to mitigate carbon emissions of healthcare.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880423 | PMC |
http://dx.doi.org/10.1177/0310057X231212211 | DOI Listing |
Anaesthesiologie
September 2025
TUM School of Medicine and Health, Klinikum rechts der Isar, Department of Anesthesiology and Intensive Care, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
Background: Medical societies around the world are exploring strategies to reduce their carbon footprint. In this context, organizational readiness can serve as an important facilitator for the success of change. In this study we assessed whether a series of educational interventions improved anesthesia departments' organizational readiness for climate change mitigation.
View Article and Find Full Text PDFJ R Soc Interface
September 2025
Department of Mechanical Engineering, University College London, London, UK.
Hospital operating theatre suites are a particularly resource- and energy-intensive component of the health sector. Reducing their carbon footprint presents a significant challenge due to the necessity of maintaining patient safety. In this paper, we apply a multidisciplinary methodology to investigate and assess various strategies aimed at reducing the carbon footprint in hospital theatres.
View Article and Find Full Text PDFJ Cataract Refract Surg
September 2025
Altos Eye Physicians, Los Altos, CA, USA.
Purpose: To quantify and compare the cost, waste, and carbon emissions of single-use and reusable phacoemulsification tubing/cassettes and knives.
Setting: Private, single-specialty ambulatory surgery center (Mountain View, CA, USA).
Design: Retrospective data review.
Cardiovasc Intervent Radiol
September 2025
Royal College of Surgeons in Ireland, Dublin, Ireland.
Healthcare waste accounts for a meaningful proportion of the global carbon footprint. There are innumerable global endeavours to integrate "green" initiatives into everyday living. Every interventional radiology (IR) department must strive to minimise its carbon footprint without any diminution of patient care.
View Article and Find Full Text PDFNurs Crit Care
September 2025
Department of Intensive Care Medicine, "La Paz" University Hospital, Madrid, Spain.
Background: The healthcare sector is a significant producer of greenhouse gas emissions, with intensive care units (ICUs) being major contributors. The environmental impact of medical waste largely depends on disposal methods; proper segregation can enhance recycling potential.
Local Problem: High variability in waste segregation and excessive linen consumption in the burn and polytrauma ICU.