98%
921
2 minutes
20
Photosensitive supercapacitors incorporate light-sensitive materials on capacitive electrodes, enabling solar energy conversion and storage in one device. In this study, heterogeneous structures of rod-shaped ZnO decorated with CeS nanoparticles on nickel foam (ZnO@CeS/NF) are synthesized using a two-step hydrothermal method as photosensitive supercapacitor electrodes for capacitance enhancement under visible light. The formation of ZnO@CeS heterogeneous structures is confirmed using various structural characterization techniques. The area-specific capacitance of the ZnO@CeS/NF composite electrode increased from 1738.1 to 1844.0 mF cm after illumination under a current density of 5 mA cm, which is 2.4 and 2.8 times higher than that of ZnO and CeS electrodes under similar conditions, respectively, indicating the remarkable light-induced capacitance enhancement performance. The ZnO@CeS/NF electrode also exhibits a higher photocurrent and photovoltage than the two single electrodes, demonstrating its excellent photosensitivity. The improved capacitance performance and photosensitivity under illumination are attributed to the well-constructed energy-level structure, which stimulates the flow of photogenerated electrons from the outer circuit and the involvement of photogenerated holes in the resulting surface-controlled capacitance. In addition, the assembled ZnO@CeS/NF-based hybrid supercapacitor exhibits a great energy density of 145.0 mWh cm under illumination. This study provides a novel strategy for the development of high-performance solar energy conversion/storage devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202306753 | DOI Listing |
J Med Internet Res
September 2025
Department of Information Systems and Cybersecurity, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, United States, 1 (210) 458-6300.
Background: Adverse drug reactions (ADR) present significant challenges in health care, where early prevention is vital for effective treatment and patient safety. Traditional supervised learning methods struggle to address heterogeneous health care data due to their unstructured nature, regulatory constraints, and restricted access to sensitive personal identifiable information.
Objective: This review aims to explore the potential of federated learning (FL) combined with natural language processing and large language models (LLMs) to enhance ADR prediction.
ACS Nano
September 2025
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
Bimorph soft actuators, traditionally composed of two materials with distinct responses to external stimuli, often face durability challenges due to structural incompatibility. Here, we propose an alternative design employing free-standing, isostructural heterogeneous Janus (IHJ) films that harmonize stability with high actuation efficiency. These IHJ films were fabricated through a vacuum self-assembly process, consisting of TiCT MXene nanosheets and hybrid graphene oxide (GO)-biomass bacterial cellulose (BC), with a well-matched two-dimensional lattice structure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States.
Hydrogel-based bioinks are widely adopted in digital light processing (DLP) 3D printing. Modulating their mechanical properties is especially beneficial in biomedical applications, such as directing cell activity toward tissue regeneration and healing. However, in both monolithic and granular hydrogels, the tunability of mechanical properties is limited to parameters such as cross-linking or packing density.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda, Bhubaneswar 752050, Odisha, India.
Quantum-confined perovskites represent an emerging class of materials with great potential for optoelectronic applications. Specifically, zero-dimensional (0D) perovskites have garnered significant attention for their unique excitonic properties. However, achieving phase-pure, size-tunable 0D perovskite materials and gaining a clear understanding of their photophysical behavior remains challenging.
View Article and Find Full Text PDFPLoS One
September 2025
The School of Electrics and Information Engineering, Yunnan Minzu University, Kunming, China.
To address the growing demand for compact and high-performance microwave filters in modern communication systems, a mixed-mode bandpass filter is proposed in the article. A dual-layer substrate integrated waveguide resonator loaded with a capacitive patch (CP-DSIWR) is proposed and theoretically analyzed, with both patch modes and cavity modes existing. To construct the bandpass filter, two rows of metallic vias are designed in the CP-SIWR to enable coupling between the two types of the modes, with the structure being fed by microstrip line.
View Article and Find Full Text PDF