Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mechanical perturbation triggers activation of resident myogenic stem cells to enter the cell cycle through a cascade of events including hepatocyte growth factor (HGF) release from its extracellular tethering and the subsequent presentation to signaling-receptor c-met. Here, we show that with aging, extracellular HGF undergoes tyrosine-residue (Y) nitration and loses c-met binding, thereby disturbing muscle homeostasis. Biochemical studies demonstrated that nitration/dysfunction is specific to HGF among other major growth factors and is characterized by its locations at Y198 and Y250 in c-met-binding domains. Direct-immunofluorescence microscopy of lower hind limb muscles from three age groups of rat, provided direct in vivo evidence for age-related increases in nitration of ECM-bound HGF, preferentially stained for anti-nitrated Y198 and Y250-HGF mAbs (raised in-house) in fast IIa and IIx myofibers. Overall, findings highlight inhibitory impacts of HGF nitration on myogenic stem cell dynamics, pioneering a cogent discussion for better understanding age-related muscle atrophy and impaired regeneration with fibrosis (including sarcopenia and frailty).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861216PMC
http://dx.doi.org/10.1111/acel.14041DOI Listing

Publication Analysis

Top Keywords

myogenic stem
12
stem cell
8
hgf
6
age-related nitration/dysfunction
4
nitration/dysfunction myogenic
4
cell activator
4
activator hgf
4
hgf mechanical
4
mechanical perturbation
4
perturbation triggers
4

Similar Publications

Craniofacial muscles are essential for a variety of functions, including fine facial expressions. Severe injuries to these muscles often lead to more devastating consequences than limb muscle injuries, resulting in the loss of critical functions such as mastication and eyelid closure, as well as facial aesthetic impairment. Therefore, the development of targeted repair strategies for craniofacial muscle injuries is crucial.

View Article and Find Full Text PDF

Background: DNA G-quadruplexes (G4s) are non-canonical secondary structures formed in guanine-rich DNA sequences and play important roles in modulating biological processes through a variety of gene regulatory mechanisms. Emerging G4 profiling allows global mapping of endogenous G4 formation.

Results: Here in this study, we map the G4 landscapes in adult skeletal muscle stem cells (MuSCs), which are essential for injury-induced muscle regeneration.

View Article and Find Full Text PDF

Hepatocyte growth factor (HGF) is a key myogenic stem cell (satellite cells) activator, that resides in the extracellular matrix (ECM). However, HGF distribution in the ECM varies depending on the muscle fiber type. Furthermore, aging impedes the binding of HGF to its receptors owing to nitration by peroxynitrite (ONOO-).

View Article and Find Full Text PDF

Satellite cells are muscle stem cells that contribute to post-hatch muscle growth by fusing with adjacent muscle fibers, thereby promoting muscle fiber hypertrophy. Satellite cells are not a uniform population; even within a single muscle, such as the turkey pectoralis major, they exhibit substantial variability in their proliferative capacity. To better understand this cellular heterogeneity, we performed transcriptomic profiling of individual satellite cell clones isolated from the same turkey pectoralis major muscle after 48 hours of differentiation.

View Article and Find Full Text PDF

In this letter, we put forward the light sheet fluorescence microscopy (LSFM) as a cutting-edge tool for 3D imaging of whole skeletal muscle, focusing on satellite cells (SCs). SCs represent the resident adult muscle stem cells, normally lying quiescent between the sarcolemma of the myofiber and the surrounding basal lamina. They typically express Pax-7 and, when activated following damage, they sequentially express specific myogenic regulatory factors including the myogenic determination factor, MyoD, thus starting differentiation towards multinucleated myofibers to repair injured tissue.

View Article and Find Full Text PDF