Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Due to the fast transmission speed and severe health damage, COVID-19 has attracted global attention. Early diagnosis and isolation are effective and imperative strategies for epidemic prevention and control. Most diagnostic methods for the COVID-19 is based on nucleic acid testing (NAT), which is expensive and time-consuming. To build an efficient and valid alternative of NAT, this article investigates the feasibility of employing computed tomography images of lungs as the diagnostic signals. Unlike normal lungs, parts of the lungs infected with the COVID-19 developed lesions, ground-glass opacity, and bronchiectasis became apparent. Through a public dataset, in this article, we propose an advanced residual learning diagnosis detection (RLDD) scheme for the COVID-19 technique, which is designed to distinguish positive COVID-19 cases from heterogeneous lung images. Besides the advantage of high diagnosis effectiveness, the designed residual-based COVID-19 detection network can efficiently extract the lung features through small COVID-19 samples, which removes the pretraining requirement on other medical datasets. In the test set, we achieve an accuracy of 91.33%, a precision of 91.30%, and a recall of 90%. For the batch of 150 samples, the assessment time is only 4.7 s. Therefore, RLDD can be integrated into the application programming interface and embedded into the medical instrument to improve the detection efficiency of COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545010PMC
http://dx.doi.org/10.1109/TII.2021.3051952DOI Listing

Publication Analysis

Top Keywords

residual learning
12
learning diagnosis
12
diagnosis detection
12
covid-19
9
advanced residual
8
diagnosis
5
detection
5
detection advanced
4
detection system
4
system covid-19
4

Similar Publications

Purpose: To build computed tomography (CT)-based radiomics models, with independent external validation, to predict recurrence and disease-specific mortality in patients with colorectal liver metastases (CRLM) who underwent liver resection.

Methods: 113 patients were included in this retrospective study: the internal training cohort comprised 66 patients, while the external validation cohort comprised 47. All patients underwent a CT study before surgery.

View Article and Find Full Text PDF

Background: Blinatumomab and inotuzumab ozogamicin (InO) are B-cell targeted agents used in the frontline and relapsed/refractory treatment of B-cell acute lymphoblastic leukaemia (B-ALL). Blinatumomab, a bispecific T-cell engager that targets CD19 and CD3, and InO, an antibody-drug conjugate targeting CD22, have both shown efficacy. However, recent reports have noted lineage conversion as a complication when these agents are used individually or sequentially.

View Article and Find Full Text PDF

DeepRNAac4C: a hybrid deep learning framework for RNA N4-acetylcytidine site prediction.

Front Genet

August 2025

Hunan Provincial Key Laboratory of Finance and Economics Big Data Science and Technology, Hunan University of Finance and Economics, Changsha, China.

RNA N4-acetylcytidine (ac4C) is a crucial chemical modification involved in various biological processes, influencing RNA properties and functions. Accurate prediction of RNA ac4C sites is essential for understanding the roles of RNA molecules in gene expression and cellular regulation. While existing methods have made progress in ac4C site prediction, they still struggle with limited accuracy and generalization.

View Article and Find Full Text PDF

Lightweight hybrid Mamba2 for unsupervised medical image registration.

Med Phys

September 2025

School of Computer, Electronics and Information, Guangxi University, Nanning, China.

Background: Deformable medical image registration is a critical task in medical imaging-assisted diagnosis and treatment. In recent years, medical image registration methods based on deep learning have made significant success by leveraging prior knowledge, and the registration accuracy and computational efficiency have been greatly improved. Models based on Transformers have achieved better performance than convolutional neural network methods (ConvNet) in image registration.

View Article and Find Full Text PDF

Background: Four-dimensional magnetic resonance imaging (4D-MRI) holds great promise for precise abdominal radiotherapy guidance. However, current 4D-MRI methods are limited by an inherent trade-off between spatial and temporal resolutions, resulting in compromised image quality characterized by low spatial resolution and significant motion artifacts, hindering clinical implementation. Despite recent advancements, existing methods inadequately exploit redundant frame information and struggle to restore structural details from highly undersampled acquisitions.

View Article and Find Full Text PDF