Evolution of cooperation in a two-species system with a common resource pool.

J Theor Biol

Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Brazil; Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil. Electronic address:

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding the evolution of cooperation is a major question in Evolutionary Biology. Here, we extend a previously proposed mathematical model in Evolutionary Game Theory that investigated how resource use by a single species composed of cooperators and defectors may lead to its maintenance or extinction. We include another species in the model, so as to investigate how different intra and interspecific interactions of cooperative or competitive nature among individuals that share the same essential resource may drive the survival and evolution of the species. Several outcomes emerge from the model, depending on the configuration of the payoff matrix, the individual contribution to the resource pool, the competition intensity between species, and the initial conditions of the system dynamics. Observed results include scenarios in which species thrive due to the action of cooperators, but also scenarios in which both species collapse due to lack of cooperation and, consequently, of resources. In particular, a high initial availability of resources may be the determinant factor to the survival of both species. Interestingly, cooperation may be more favored when individuals have less incentive to cooperate with others, and the survival of their populations may depend crucially on their competitive capacities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2023.111670DOI Listing

Publication Analysis

Top Keywords

evolution cooperation
8
resource pool
8
scenarios species
8
species
7
cooperation two-species
4
two-species system
4
system common
4
resource
4
common resource
4
pool understanding
4

Similar Publications

We develop a model that integrates evolutionary matrix game theory with Mendelian genetics. Within this framework, we define the genotype dynamics that describes how the frequencies of genotypes change in sexual diploid populations. We show that our formal definition of evolutionary stability for genotype distributions implies the stability of the corresponding interior equilibrium point in the genotype dynamics.

View Article and Find Full Text PDF

Developing the efficient C─H bond activation carboxylation processes for furoic acid (FA) represents a critical technological challenge in achieving atom-economical synthesis of 2,5-furandicarboxylic acid (FDCA). Despite notable advancements in this field, the inherent contradiction between the high reactivity of furan rings and the chemical inertness of C─H bonds poses substantial technical bottleneck for achieving controllable C─H carboxylation under mild conditions. Herein, we report a high lattice-distorted MnOx catalyst with surface trench-like structures, wherein the Mn-O-conjugated configurations and electron-rich Mn cooperatively drive FA dehydrogenation and carbon radical reduction, inducing the free radical evolution process (FA→carbon-centered FA radical→FA carbanion), then coupled with solvent-polarized CO to accelerate the carboxylation process.

View Article and Find Full Text PDF

Transmission networks of long-term and short-term knowledge in a foraging society.

PNAS Nexus

September 2025

Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany.

Cultural transmission across generations is key to cumulative cultural evolution. While several mechanisms-such as vertical, horizontal, and oblique transmission-have been studied for decades, how these mechanisms change across the life course, beyond childhood, remains unclear. Furthermore, it is under-explored whether different mechanisms apply to distinct learning processes: long-term learning-where individuals invest time and effort to acquire skills-and short-term learning-where individuals share information of immediate use.

View Article and Find Full Text PDF

Theoretical and empirical considerations suggest that relatedness can have complex effects on social life. While high relatedness may promote sibling cooperation and altruism through indirect fitness benefits, it can also intensify competition if siblings share similar needs and competitive strategies. Moreover, low genetic diversity in highly related groups may heighten susceptibility to pathogens.

View Article and Find Full Text PDF

Background: Interprofessional Education (IPE) is widely recognized as essential for fostering collaborative healthcare practices and improving patient outcomes. Despite its acknowledged importance, there remains a notable scarcity of longitudinal research assessing medical students' readiness for IPE across distinct educational stages, particularly within diverse global contexts like Brazil.

Aim: This study sought to address this gap by longitudinally mapping and analyzing the evolution of medical students' readiness for interprofessional learning throughout their academic training at a Brazilian university.

View Article and Find Full Text PDF