98%
921
2 minutes
20
Background: Prostate cancer is a leading cause of cancer-related deaths in men worldwide. Despite advances in treatment strategies, there is still a need for novel therapeutic targets and approaches. Ferroptosis has emerged as a critical process in the development and progression of several cancers, including prostate cancer (PCA). In this study, we investigate the role of MT1G, a gene implicated in immune responses and ferroptosis, in the pathogenesis of PCA. Our objective is to elucidate its prognostic significance and its impact on the tumor microenvironment, while exploring its potential in enhancing the sensitivity to immune checkpoint inhibitor (ICI) therapy.
Methods: We utilized a combination of in silico analysis and experimental techniques to investigate the role of MT1G in PCA. First, we analyzed large-scale genomic datasets to assess the expression pattern and prognostic significance of MT1G in PCA patients. Subsequently, we performed functional assays to explore the impact of MT1G in PCA and its potential involvement in modulating immune responses. In addition, we conducted in vivo experiments to evaluate the effect of MT1G on tumor growth and response to ICI therapy.
Results: Our analysis revealed that MT1G expression is significantly downregulated in PCA tissues compared to normal prostate tissues and is associated with poor prognosis. Furthermore, MT1G overexpression inhibited the growth of PCA cells in vitro and in vivo. Importantly, we found that MT1G regulates the tumor microenvironment by modulating immune cell infiltration and inhibiting immunosuppressive factors. Furthermore, our study reveals a significant correlation between MT1G expression levels and the response to immune checkpoint inhibitor (ICI) therapy in prostate cancer (PCA) patients, as MT1G upregulation leads to an increase in PDL-1 expression. These findings underscore the potential of MT1G as a promising predictive biomarker for ICI therapy response in PCA patients.
Conclusion: Our study elucidates the pivotal role played by MT1G in the pathogenesis of prostate cancer (PCA) and its profound implications for prognosis. Moreover, it raises the intriguing possibility that MT1G could pave the way for novel therapeutic approaches in PCA treatment. This potential arises from its ability to orchestrate immune infiltration within the tumor microenvironment, consequently enhancing sensitivity to immune checkpoint inhibitor (ICI) therapy. Therefore, our findings hold substantial promise for advancing our comprehension of PCA and exploring innovative therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tox.23997 | DOI Listing |
J Pathol Transl Med
September 2025
Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
Background: Prostate cancer is one of the most common malignancies in males worldwide. Serum prostate-specific antigen is a frequently employed biomarker in the diagnosis and risk stratification of prostate cancer; however, it is known for its low predictive accuracy for disease progression. New prognostic biomarkers are needed to distinguish aggressive prostate cancer from low-risk disease.
View Article and Find Full Text PDFHistol Histopathol
September 2025
Institute of Pathology, University Hospital Bonn, Bonn, Germany.
Aims: We aimed to analyze CD63, a cell surface protein that has been associated with tumor aggressiveness in several cancers, including breast, colorectal, and lung cancer, as well as melanoma, in prostate cancer.
Methods: CD63 expression was analyzed immunohistochemically in a cohort of primary prostate cancers from 281 patients. The results were correlated with clinico-pathologic parameters, including biochemical recurrence.
Nan Fang Yi Ke Da Xue Xue Bao
August 2025
Department of Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China.
Objectives: To identify immunosuppressive neutrophil subsets in patients with prostate cancer (PCa) and construct a risk prediction model for prognosis and immunotherapy response of the patients based on these neutrophil subsets.
Methods: Single-cell and transcriptome data from PCa patients were collected from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Neutrophil subsets in PCa were identified through unsupervised clustering, and their biological functions and effects on immune regulation were analyzed by functional enrichment, cell interaction, and pseudo-time series analyses.
Curr Cancer Drug Targets
September 2025
Department of Biotechnology, Institute of Applied Sciences &Humanities, GLA University, 17km Stone, NH-19, Mathura, Delhi Road, P.O. Chaumuhan, Mathura, 281 406, U.P. India.
Phospholipids play a crucial role in various aspects of cancer biology, including tumor progression, metastasis, and cell survival. Recent studies have highlighted the signifi-cance of phospholipid metabolism and signaling in multiple cancer types, such as breast, cer-vical, prostate, bladder, colorectal, liver, lung, melanoma, mesothelioma, and oral cancer. Al-terations in phospholipid profiles, particularly in phosphatidylcholine and phosphatidylethan-olamine, have been identified as potential biomarkers for cancer diagnosis and prognosis.
View Article and Find Full Text PDFTurk J Pharm Sci
September 2025
Gate Institute of Pharmaceutical Sciences, Telangana, India.
Objectives: Bortezomib (BTZ) functions as an androgen receptor signalling inhibitor, is used for the treatment of prostate cancer, and has been sanctioned by the United States Food and Drug Administration. The medicinal applications of BTZ are impeded by low solubility, first-pass metabolism, and restricted bioavailability. This study aimed to develop and enhance polylactic acid-co-glycolic acid (PLGA) nanobubbles (NBs) as a sustained-release mechanism for BTZ, thereby augmenting stability and bioavailability.
View Article and Find Full Text PDF