98%
921
2 minutes
20
Background: In the field of biology and medicine, the interpretability and accuracy are both important when designing predictive models. The interpretability of many machine learning models such as neural networks is still a challenge. Recently, many researchers utilized prior information such as biological pathways to develop neural networks-based methods, so as to provide some insights and interpretability for the models. However, the prior biological knowledge may be incomplete and there still exists some unknown information to be explored.
Results: We proposed a novel method, named PathExpSurv, to gain an insight into the black-box model of neural network for cancer survival analysis. We demonstrated that PathExpSurv could not only incorporate the known prior information into the model, but also explore the unknown possible expansion to the existing pathways. We performed downstream analyses based on the expanded pathways and successfully identified some key genes associated with the diseases and original pathways.
Conclusions: Our proposed PathExpSurv is a novel, effective and interpretable method for survival analysis. It has great utility and value in medical diagnosis and offers a promising framework for biological research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648621 | PMC |
http://dx.doi.org/10.1186/s12859-023-05535-2 | DOI Listing |
J Environ Pathol Toxicol Oncol
January 2025
Department of General Surgery, Xiangshan First People's Hospital Medical and Health Group, Ningbo 315700, China.
Breast cancer (BC) is one of the main causes of cancer-related death in women. The purpose of this study was to evaluate the expression of miR-605-5p in BC and its diagnostic and prognostic value. BC patients and healthy individuals who met the study criteria were included.
View Article and Find Full Text PDFJ Environ Pathol Toxicol Oncol
January 2025
Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China.
Despite advancements in systemic therapy, the mortality rate for patients with metastatic melanoma remains around 70%, underscoring the imperative for alternative treatment strategies. Through the establishment of a chemoresistant melanoma model and a subsequent drug investigation, we have identified pacritinib, a medication designed for treating myelofibrosis and severe thrombocytopenia, as a potential candidate to overcome resistance to melanoma therapy. Our research reveals that pacritinib, administered at clinically achievable concentrations, effectively targets dacarbazine-resistant melanoma cells by suppressing IRAK1 rather than JAK2.
View Article and Find Full Text PDFBackground: Oesophageal squamous cell carcinoma is the predominant histopathological subtype of oesophageal cancer across the world, representing as many as 90% of all cases; however, within Western cohorts, it is a low-prevalence disease, and, as such, appropriately powered trials to establish a standard treatment paradigm in this population remain challenging. The aim of this study was to assess current practices and compare outcomes for patients with locally advanced oesophageal squamous cell carcinoma across the UK and Ireland.
Methods: This was a retrospective multicentre cohort study of patients managed with curative intent for squamous cell carcinoma of the middle or distal oesophagus in 23 hospitals across the UK and Ireland.
ACS Infect Dis
September 2025
Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China.
The emergence of multidrug-resistant (MDR) poses a significant threat to global public health, necessitating alternative therapeutic strategies. In this study, we isolated and characterized a novel lytic bacteriophage (phage), vB_EcoM_51, from poultry farm sewage and evaluated its potential against MDR . Transmission electron microscopy revealed that the phage exhibits morphological features typical of the family, including a polyhedral head (∼66.
View Article and Find Full Text PDFPLoS One
September 2025
Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.
Zygotes are used to create genetically modified animals by electroporation using the CRISPR-Cas9 system. Such zygotes in rats are obtained from superovulated female rats after mating. Recently, we reported that in vivo-fertilized zygotes had higher cryotolerance and developmental ability than in vitro-fertilized zygotes in Sprague Dawley (SD) and Fischer 344 rats.
View Article and Find Full Text PDF