Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Flexible sensors produced through three-dimensional (3D) printing have exhibited promising results in the context of underwater sensing detection (for applications in navigational vehicles and human activities). However, underwater vehicles and activities such as swimming and diving are highly susceptible to drag, which can cause negative impacts such as reduced speed and increased energy consumption. Additionally, microbial adhesion can shorten the service life of these vehicles. However, natural organisms are able to circumvent such problems, with shark skin offering excellent barrier properties and ruffled papillae providing effective protection against fouling. Here, we show that a sandwich system consisting of a spraying layer, conductive elastomer composite, and encapsulation layer can be printed for multifunctional integrated underwater sensors. The modulated viscoelastic properties of liquid metal form the foundation for printing features, while its pressure-activated properties offer the potential for switchable sensors. An integrated drag reduction and antifouling layer were created by combining the shark skin surface shield scale structure with the lotus leaf surface papillae structure. A 3D-printed flexible sensor was designed using our approach to monitor attitude changes and strain in underwater environments, showcasing its capabilities. Our printed sensors can reduce biological attachment density by more than 50% and reduce underwater drag by 8.6-10.3%.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c12910DOI Listing

Publication Analysis

Top Keywords

liquid metal
8
flexible sensor
8
drag reduction
8
shark skin
8
underwater
5
pressure-activatable liquid
4
metal composites
4
composites flexible
4
sensor antifouling
4
drag
4

Similar Publications

Promoter-assisted chemical vapor deposition (CVD) has emerged as a robust strategy for the low-temperature synthesis of diverse transition metal dichalcogenides (TMDs). In these processes, promoter-induced intermediates facilitate specific reaction pathways, enabling controlled growth via vapor-solid-solid (VSS) or vapor-liquid-solid (VLS) modes. While previous studies have primarily focused on transition metal precursors, growth pathways involving engineered chalcogen-based intermediates remain underexplored due to their volatility and low melting points.

View Article and Find Full Text PDF

Soft conductive composites are significant components of soft and wearable electronics. Existing soft conductive composites encounter difficulties in attaining 10% of copper's electrical conductivity while maintaining high stretchability. In this work, a novel "soft conductive junction" concept is introduced to overcome the conductivity-stretchability trade-off.

View Article and Find Full Text PDF

Recent Advances in Metal-Organic Frameworks for Electromagnetic Wave Absorption.

Research (Wash D C)

September 2025

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China.

With the rapid advancement of communication technologies, issues of electromagnetic pollution and electromagnetic compatibility have become increasingly severe, heightening the demand for high-performance electromagnetic wave absorption materials. Metal-organic frameworks (MOFs) have flourished in this field owing to their chemical tunability, high porosity, tailored topological structures, and functionality. MOF-derived composites exhibit diverse loss mechanisms and heterogeneous structures, achieving lightweight, broadband, and highly efficient absorption.

View Article and Find Full Text PDF

Approach to Evaluating Reorganization Energies of Interfacial Electrochemical Reactions.

ACS Electrochem

September 2025

Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Reaction rate coefficients for electron-transfer processes at the electrode-electrolyte interface are commonly estimated by using the Butler-Volmer equation, but their values are inaccurate beyond a few tenths of volts of overpotential. The Marcus-Hush-Chidsey (MHC) formalism yields correct asymptotic behavior of the rate coefficients vs applied overpotential but has complex dependencies on the redox system's intrinsic parameters, which can be difficult to model or measure. In this work, we bridge the two kinetics formalisms to estimate the reorganization energy, one of the important parameters for the MHC formalism, and investigate its dependence on other intrinsic parameters such as activation barriers, electronic coupling strength, and the density of states of the electrode surface.

View Article and Find Full Text PDF

The study of electrochemical oxidations has wide-ranging implications, from the development of new electrocatalysts for fuel cells for energy conversion, to the synthesis of fine chemicals. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) has been used for decades as a sustainable, metal-free mediator for chemical oxidations and is now being used for electrochemical oxidations. We describe here a novel approach to TEMPO-mediated electrooxidations, in which the chemical input and waste generated during electrooxidations of alcohols are minimized by using a multifunctional room temperature ionic liquid (RTIL) to facilitate flow electrosynthesis.

View Article and Find Full Text PDF