98%
921
2 minutes
20
In this paper, the study is supported by design, FEA simulation, and practical RF measurements on fabricated single-port-cavity-based acoustic resonator for gas sensing applications. In the FEA simulation, frequency domain analysis was performed to enhance the performance of the acoustic resonator. The structural and surface morphologies of the deposited ZnO as a piezoelectric layer have been studied using XRD and AFM. The XRD pattern of deposited bulk ZnO film indicates the perfect single crystalline nature of the film with dominant phase (002) at 2θ = 34.58°. The AFM micrograph indicates that deposited piezoelectric film has a very smooth surface and small grain size. In the fabrication process, use of bulk micro machined oxide (SiO) for the production of a thin membrane as a support layer is adopted. A vector network analyzer (Model MS2028C, Anritsu) was used to measure the radio frequency response of the resonators from 1 GHz to 2.5 GHz. As a result, we have successfully fabricated an acoustic resonator operating at 1.84 GHz with a quality factor Q of 214 and an effective electromechanical coupling coefficient of 10.57%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648268 | PMC |
http://dx.doi.org/10.3390/s23218920 | DOI Listing |
J Acoust Soc Am
September 2025
ENTPE, Ecole Centrale de Lyon, CNRS, LTDS, UMR5513, 69518 Vaulx-en-Velin, France.
This study investigated the potential role of temporal, spectral, and binaural room-induced cues for the perception of virtual auditory distance. Listeners judged the perceived distance of a frontal source simulated between 0.5 and 10 m in a room via headphones, with eyes closed in a soundproof booth.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2025
School of Electrical and Computer Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
This paper presents relatively simple formulations of the problem of acoustic scattering by flooded and hollow elastic shells immersed in fluids, which can serve as a basis for efficient numerical models. The full rigorous formulation of the problem, which involves the Helmholtz equations for acoustic pressures in the fluids and the Navier equation for three-dimensional displacements in the elastic material, is reduced to a boundary value problem only for the Helmholtz equations with effective boundary conditions relating the boundary pressures and normal displacements on both sides of the shell. To that end, the thin elastic shell is regarded as a neighborhood of its midsurface, and the boundary values of the elastic quantities (displacements and stresses) are expressed via their expansions about the midsurface, considering the shell thickness as a small parameter.
View Article and Find Full Text PDFFront Allergy
August 2025
Department of Surgery, University of Auckland, Auckland, New Zealand.
Allergic rhinitis (AR) and chronic rhinosinusitis (CRS) are common respiratory conditions that significantly impact patient health and contribute to substantial healthcare burdens. While conventional treatments offer symptom relief, many patients continue to experience persistent symptoms, side effects, or resistance to standard therapies. This highlights the growing need for novel, non-invasive, and sustainable therapeutic strategies to manage chronic airway inflammation.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2025
Department of Head and Neck Surgery, University of California, Los Angeles, 31-24 Rehab Center, 1000 Veteran Avenue, Los Angeles, California 90095-1794, USA.
The goal of this study was to understand the interaction between the voice source spectral shape, formant tuning, and fundamental frequency in determining the vocal tract contribution to vocal intensity. Computational voice simulations were performed with parametric variations in both vocal fold and vocal tract configurations. The vocal tract contribution to vocal intensity was quantified as the difference in the A-weighted sound pressure level between the radiated sound pressure and the sound pressure at the glottis.
View Article and Find Full Text PDFAnal Chem
September 2025
National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150001, China.
In this paper, a single-quartz-enhanced photoacoustic-photothermal dual spectroscopy sensor based on a spherical acoustic resonator (SAR) is reported for the first time. The dual spectroscopy of quartz-enhanced photoacoustic spectroscopy (QEPAS) and quartz-enhanced photothermal spectroscopy (QEPTS), utilizing a single quartz tuning fork (QTF), eliminates the frequency mismatch issue that occurs when multiple QTFs are used. The dual spectroscopy model was constructed using the finite element method, which provides numerical simulation support for subsequent experiments.
View Article and Find Full Text PDF