Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The matter constituting the enamels of four types of organisms was studied. The variability of the ions was presented in molar units. It was proven that the changes in water contents of the enamel are significantly positively related to changes in Mg; inversely, there is also a strong connection with changes in Ca and P, the main components of bioapatite. The variability in the organic matter has the same strong and positive characteristics and is also coupled with changes in Mg contents. Amelogenins in organic matter, which synthesize enamel rods, likely have a role in adjusting the amount of Mg, thus establishing the amount of organic matter and water in the whole enamel; this adjustment occurs through an unknown mechanism. Ca, P, Mg, and Cl ions, as well as organic matter and water, participate in the main circulation cycle of bioapatites. The selection of variations in the composition of bioapatite occurs only along particular trajectories, where the energy of transformation linearly depends on the following factors: changes in the crystallographic d parameter; the increase in the volume, V, of the crystallographic cell; the momentum transfer, which is indirectly expressed by ΔsinΘ value. To our knowledge, these findings are novel in the literature. The obtained results indicate the different chemical and crystallographic affinities of the enamels of selected animals to the human ones. This is essential when animal bioapatites are transformed into dentistic or medical substitutes for the hard tissues. Moreover, the role of Mg is shown to control the amount of water in the apatite and in detecting organic matter in the enamels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10648067 | PMC |
http://dx.doi.org/10.3390/ijms242115974 | DOI Listing |