Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: The aim of this study was to assess the biomechanical effects of subtalar ligament injury and reconstruction on stability of the subtalar joint in all three spatial planes.

Methods: Fifteen fresh frozen cadaveric legs were used, with transfixed tibiotalar joints to isolate motion to the subtalar joint. An arthrometer fixed to the lateral aspect of the calcaneus measured angular displacement in all three spatial planes on the inversion and eversion stress tests. Stress manoeuvres were tested with the intact joint, and then repeated after sequentially sectioning the inferior extensor retinaculum (IER), cervical ligament (CL), interosseous talocalcaneal ligament (ITCL), arthroscopic graft reconstruction of the ITCL, and sectioning of the calcaneo-fibular ligament (CFL).

Results: Sectioning the ITCL significantly increased angular displacement upon inversion and eversion in the coronal and sagittal planes. Reconstruction of the ITCL significantly improved angular stability against eversion in the axial and sagittal planes, and against inversion in the axial and coronal planes, at the zero time point after reconstruction. After sectioning the CFL, resistance to eversion decreased significantly in all three planes.

Conclusion: Progressive injury of ligamentous stabilisers, particularly the ITCL, led to increasing angular displacement of the subtalar joint measured with the inversion and eversion stress tests, used in clinical practice. Reconstruction of the ITCL using tendon graft significantly stabilised the subtalar joint in the axial and sagittal planes against eversion and in the axial and coronal planes against inversion, immediately after surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10719127PMC
http://dx.doi.org/10.1007/s00167-023-07622-6DOI Listing

Publication Analysis

Top Keywords

subtalar joint
20
angular displacement
12
planes inversion
12
inversion eversion
12
reconstruction itcl
12
sagittal planes
12
interosseous talocalcaneal
8
talocalcaneal ligament
8
three spatial
8
eversion stress
8

Similar Publications

Introduction: subtalar dislocations, typical of high-energy trauma, are classified as medial, lateral, anterior or posterior depending on the deviation of the foot in relation to the talus. Lateral dislocation accounts for 17% of the total and has a worse prognosis. Immediate reduction is required to reduce the risk of sequelae, the incidence of which is around 90%.

View Article and Find Full Text PDF

Background: Isolated sustentaculum tali fractures among pediatric cohorts represent an exceedingly uncommon entity (<1% of all calcaneal fractures), with limited published evidence regarding operative intervention in prepubescent patients. Diagnostic complexities emerge from radiographically indiscernible fracture patterns, mandating cross-sectional imaging modalities. This case study documents the youngest reported patient (7-year-old female) and introduces the first comprehensive morphometric analysis of fracture characteristics and clinical outcomes following surgical management via open reduction and internal fixation (ORIF) utilizing Kirschner wire (K-wire) stabilization.

View Article and Find Full Text PDF

Background: Coronal wedge insoles are commonly prescribed to mitigate musculoskeletal disorders, yet their static-standing kinematic and kinetic effects on lower extremity joints remain insufficiently understood.

Methods: This cross-sectional experimental study included 15 healthy older adults (mean 64.9 ± 6.

View Article and Find Full Text PDF

Purpose: This study aimed to investigate foot kinematics during gait in individuals with idiopathic clubfoot initially treated with the Ponseti method, focusing on clubfoot-specific deformities, to improve the understanding of posttreatment functional impairments.

Methods: In this prospective cohort study, 23 patients with treated idiopathic clubfoot (34 feet) were compared with 15 age-matched healthy controls (30 feet). Gait analysis was performed using the Heidelberg Foot Model.

View Article and Find Full Text PDF

Cable-driven ankle exoskeletons are primarily designed to assist plantarflexion, but their actuation cables also span the subtalar joint, potentially producing unintended inversion-eversion torques. These unintended torques can affect frontal-plane kinematics, joint coordination, gait stability, and assistance efficiency. This study investigated how the ankle complex responds to multidimensional assistance torques during walking.

View Article and Find Full Text PDF