Endomorphin-2 analogs with C-terminal esterification display potent antinociceptive effects in the formalin pain test in mice.

Peptides

School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China. Electronic address:

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Previously, we have investigated three C-terminal esterified endomorphin-2 (EM-2) analogs EM-2-Me, EM-2-Et and EM-2-Bu with methyl, ethyl and tert-butyl ester modifications, respectively. These analogs produced significant antinociception in acute pain at the spinal and supraspinal levels, with reduced tolerance and gastrointestinal side effects. The present study was undertaken to determine the analgesic effects and opioid mechanisms of these three analogs in the formalin pain test. Our results demonstrated that intracerebroventricular (i.c.v.) administration of 0.67-20 nmol EM-2 analogs EM-2-Me, EM-2-Et and EM-2-Bu produced dose-dependent antinociceptive effects in both phase Ⅰ and phase Ⅱ of formalin pain. EM-2-Me and EM-2-Bu displayed more potent antinociception than morphine. Especially, EM-2-Bu exhibited the highest antinociception in phase Ⅱ of formalin pain, with the ED value being 2.1 nmol. Naloxone (80 nmol, i.c.v.) completely antagonized the antinociceptive effects of EM-2-Me, EM-2-Et and EM-2-Bu (20 nmol, i.c.v.) in both phase I and phase Ⅱ of formalin pain, suggesting a central opioid mechanism. Nevertheless, the antinociception induced by EM-2-Me might be involved in the release of dynorphin A, which subsequently acted on κ- opioid receptor. EM-2-Bu produced the antinociception probably by the direct activation of both μ- and δ-opioid receptors. EM-2-Me, EM-2-Et and EM-2-Bu also produced significant analgesic effects after peripheral administration, and the central opioid receptors were involved. Furthermore, EM-2-Bu had no influence on the locomotor activity after i.c.v. injection. The present investigation demonstrated that C-terminal esterified modifications of EM-2 will be beneficial for developing novel therapeutics in formalin pain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2023.171116DOI Listing

Publication Analysis

Top Keywords

formalin pain
24
em-2-me em-2-et
16
em-2-et em-2-bu
16
antinociceptive effects
12
em-2-bu produced
12
phase Ⅱ
12
Ⅱ formalin
12
pain test
8
c-terminal esterified
8
em-2 analogs
8

Similar Publications

Generation and phenotypic characterization of a sigma-1 receptor knockout rat.

Life Sci

September 2025

Department of Pharmacology, Faculty of Medicine, University of Granada, 18016, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012, Granada, Spain. Electronic address: fnieto@u

The sigma-1 receptor (σ1R) is a chaperone involved in multiple physiological and pathological processes, including pain modulation, neuroprotection, and neurodegenerative diseases. Despite its functional significance, its precise roles remain unclear due to the lack of suitable models for detailed mechanistic studies. In this work, we describe the generation and phenotypic characterization of a novel σ1R knockout (σ1R KO) rat model.

View Article and Find Full Text PDF

The connective tissue support of female pelvic viscera-endopelvic fascia-has been studied in fetal and immunohistochemical models to demonstrate its relationship with the autonomic nerves of the female pelvis. Due to a paucity of literature examining the gross anatomical relationships between endopelvic fascia and autonomic nerves in adult female pelvises, it remains unknown whether defects in endopelvic fascia predisposing pelvic organ prolapse and/or manipulation of endopelvic fascia during prolapse repair may be the cause of prolapse-related pelvic pain and sexual dysfunction. Through the dissection of formalin-fixed hemipelvises (n = 10) the present study aimed to map the loci of the visceral branches of the inferior hypogastric plexus and associate them with endopelvic fascia of the female pelvis.

View Article and Find Full Text PDF

This study explores the synthesis of new acyl hydrazide derivatives of mefenamic acid as potent analgesics with enhanced safety profiles. Thirteen compounds were synthesized via hydrazide intermediate functionalization and characterized spectroscopically (H/C NMR, and HRESI-MS). In vivo evaluation (acetic acid writhing, formalin paw licking, and tail immersion tests) revealed significant peripheral and central analgesic activity, with compounds 5 (N'-(4-chlorobenzoyl)) and 11 (N'-(2,4-dichlorophenyl)) outperforming mefenamic acid (81.

View Article and Find Full Text PDF

Haloperidol potentates the antinociceptive effect of buprenorphine and tramadol in rats.

Behav Pharmacol

October 2025

Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico.

This study aimed to evaluate the pharmacological effects of haloperidol on the antinociceptive effects of buprenorphine and tramadol in rats. Dose-response curves were constructed for the individual administration of haloperidol, buprenorphine, and tramadol in rats subjected to the formalin (1%) test. All the compounds demonstrated dose-dependent antinociceptive effects when administered individually.

View Article and Find Full Text PDF

Introduction And Importance: Accidental chemical injuries in medical settings are uncommon but can have devastating consequences. Formaldehyde (commonly in the form of formalin solution) is widely used as tissue fixative in clinics and laboratories. If inadvertently introduced into living tissue, formaldehyde causes rapid protein coagulation and tissue fixation, leading to cell death and necrosis.

View Article and Find Full Text PDF