A bending model for assessing relative stiffness and strength of orthopaedic fixation constructs.

Clin Biomech (Bristol)

Duke University, Department of Mechanical Engineering and Material Sciences, USA. Electronic address:

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The purpose of this study is to develop a simple and reproducible bending model that is compatible with a wide range of orthopaedic fixation devices and 3D printed spacers.

Methods: A robust 4-point bending model was constructed by securing sawbones blocks with different orthopaedic fixation device constructs. Stress strain curves derived from a fundamental mechanics model were used to assess the effect of bone density, type of hardware (staple vs intramedullary beam), the use of dynamic compression, orientation of staples (dorsal vs plantar), and the use of 3D printed titanium spacers.

Findings: The high throughput 4-point bending model is simple enough that the methods can be easily repeated to assess a wide range of fixation methods, while complex enough to provide clinically relevant information.

Interpretations: It is recommended that this model is used to assess a large initial set of fixation methods in direct and straightforward comparisons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinbiomech.2023.106135DOI Listing

Publication Analysis

Top Keywords

bending model
16
orthopaedic fixation
12
wide range
8
4-point bending
8
model assess
8
fixation methods
8
fixation
5
model
5
bending
4
model assessing
4

Similar Publications

In this study, we analyze InO thin-film transistors (InO-TFT) using synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES) in conditions. A bottom-gate InO-TFT with a high- AlO gate dielectric, grown on thermally oxidized silicon (SiO/p-Si), was examined while operating at varying and . The results reveal that the In 3d core level binding energy varies along the horizontal channel length, driven by the potential gradient induced by .

View Article and Find Full Text PDF

Study of a near-cortical over-drilling technique on plate constructs with a conical locking system in a rabbit femoral fracture using a finite element model.

Med Eng Phys

October 2025

Centre for Simulation in Bioengineering, Biomechanics and Biomaterials (CS3B), Department of Mechanical Engineering, School of Engineering of Bauru, São Paulo State University (UNESP), Bauru, São Paulo, Brazil. Electronic address:

This study aimed to evaluate the near-cortical over-drilling technique on the mechanical behaviour of bone-plate constructs in a rabbit transverse femoral fracture. In vitro biomechanical testing and finite element (FE) models were used for analyses. Rabbits' bones (n = 14) were divided into two groups: G1 - without near-cortical over-drilling, and G2 - with near-cortical over-drilling.

View Article and Find Full Text PDF

Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.

View Article and Find Full Text PDF

High cost of clinical trials hinders further enhancement of comprehensive mechanical properties of bioresorbable scaffolds (BRS). Therefore, a multi-objective optimization method combining surrogate modeling and finite element simulation is proposed, based on the evaluation of stents with various auxetic structures and materials. The results demonstrated that re-entrant hexagon stent made of PLA (PLA-RH stent) was a more ideal candidate, with superior radial recoil and force.

View Article and Find Full Text PDF

BackgroundA stable guiding system is essential for successful carotid artery stenting (CAS), particularly when navigating tortuous aortic or supra-aortic anatomy. However, data on the mechanical behavior of stent delivery systems remain scarce.ObjectiveTo assess and compare the bending stiffness and trackability of five commercially available carotid stent delivery systems using bench-top experiments.

View Article and Find Full Text PDF