Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Studies in mice and cross-sectional studies in humans support the premise that cellular senescence is a contributing mechanism to age-associated deficits in physical function. We tested the hypotheses that circulating proteins secreted by senescent cells are (i) associated with the incidence of major mobility disability (MMD), the development of persistent mobility disability (PMMD), and decrements in physical functioning in older adults, and (ii) influenced by physical activity (PA). Using samples and data obtained longitudinally from the Lifestyle Interventions in Elders Study clinical trial, we measured a panel of 27 proteins secreted by senescent cells. Among 1 377 women and men randomized to either a structured PA intervention or a healthy aging (HA) intervention, we observed significant associations between several senescence biomarkers, most distinctly vascular endothelial growth factor A (VEGFA), tumor necrosis factor receptor 1 (TNFR1), and matrix metallopeptidase 7 (MMP7), and the onset of both MMD and PMMD. Moreover, VEGFA, GDF15, osteopontin, and other senescence biomarkers were associated with reductions in short physical performance battery scores. The change in senescence biomarkers did not differ between PA and HA participants. In the whole cohort, higher levels of PA were associated with significantly greater reductions in 10 senescence-related proteins at 12 and/or 24 months. These data reinforce cellular senescence as a contributing mechanism of age-associated functional decline and the potential for PA to attenuate this hallmark of aging. Clinical Trials Registration Number: NCT01072500.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851672PMC
http://dx.doi.org/10.1093/gerona/glad257DOI Listing

Publication Analysis

Top Keywords

cellular senescence
12
mobility disability
12
senescence biomarkers
12
physical activity
8
older adults
8
senescence contributing
8
contributing mechanism
8
mechanism age-associated
8
proteins secreted
8
secreted senescent
8

Similar Publications

Aging is a major risk factor for various neurological disorders, including Alzheimer's disease, and is associated with the accumulation of senescent cells, which can themselves propagate the senescence process through paracrine signaling. Migrasomes are organelles that form during cellular migration, detach from parent cells and mediate intercellular communication. Here we demonstrate that border-associated macrophages (BAMs) acquire senescence-associated properties during early brain aging, possibly due to prolonged exposure to amyloid beta.

View Article and Find Full Text PDF

Senolytic therapy increases replicative capacity by eliminating senescent endothelial cells.

Exp Gerontol

September 2025

Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Salk Institute for Biological Studies, La Jolla, CA, 92037, USA; Department of Molecular Biology, University of Utah, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah, Salt Lake Ci

Aging is the greatest risk factor for cardiovascular diseases (CVD) and is characterized by inflammation, oxidative stress, and cellular senescence. Cellular senescence is a state of persistent cell cycle arrest triggered by stressors such as DNA damage and telomere attrition. Senescent endothelial cells (ECs) can impair vascular function and promote inflammation, thereby contributing to CVD progression.

View Article and Find Full Text PDF

Shenqi Wan inhibits cellular senescence to alleviate renal fibrosis by modulating the AQP1/TGF-β1/ITPR1 axis.

Phytomedicine

September 2025

School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. Electronic address:

Background: Renal fibrosis is a common terminal pathway for various CKDs. Shenqi Wan (SQW) can reduce the development of renal fibrosis and may be associated with aquaporin 1 (AQP1) as discovered previously.

Purpose: The mechanism of SQW in mitigating the progression of renal fibrosis and alleviating CKD was analyzed.

View Article and Find Full Text PDF

Interferon-induced senescent CD8 T cells reduce anti-PD1 immunotherapy efficacy in early triple-negative breast cancer.

Sci Transl Med

September 2025

Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.

Triple-negative breast cancers (TNBCs) lack predictive biomarkers to guide immunotherapy, especially during early-stage disease. To address this issue, we used single-cell RNA sequencing, bulk transcriptomics, and pathology assays on samples from 171 patients with early-stage TNBC receiving chemotherapy with or without immunotherapy. Our investigation identified an enriched subset of interferon (IFN)-induced CD8 T cells in early TNBC samples, which predict immunotherapy nonresponsiveness.

View Article and Find Full Text PDF

Botanical Nanovesicles Boost Mesenchymal Stem Cell Therapy: Next-Gen Advanced Therapy Medicinal Products for Spinal Cord Injury.

Tissue Eng Part B Rev

September 2025

Department of Pharmaceutics School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.

The poor prognosis constitutes a significant difficulty for spinal cord injury (SCI) individuals. Although mesenchymal stem cells (MSCs) hold promises as advanced therapy medicinal products (ATMPs) for SCI patients, challenges such as Good Manufacturing Practice-compliant manufacturing, cellular senescence, and limited therapeutic efficacy continue to hinder their clinical translation. Recent advances have identified botanical nanovesicles (BNs) as potent bioactive mediators capable of "priming" MSCs to self-rejuvenate, augment paracrine effect, and establish inflammatory tolerance.

View Article and Find Full Text PDF