A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Integrating properties and conditions to predict spray performance of alternative aviation fuel by ANN model. | LitMetric

Integrating properties and conditions to predict spray performance of alternative aviation fuel by ANN model.

Biotechnol Biofuels Bioprod

School of Energy and Power Engineering, Energy and Environment International Center, Beihang University, Haidian District, 37 Xueyuan Rd., Beijing, 100191, People's Republic of China.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alternative aviation fuel has been confirmed benefits for GHGs reduction and energy saving. Alternative fuel use should meet drop-in fuel requirement, and one of the important factors to ensure combustion completeness is to achieve spray requirement in the whole envelop of flight. Alternative fuels are characterized different fuel properties at low temperature comparison with traditional jet fuel. For understanding fuel properties and spray-related processes under different conditions, alternative aviation fuel, including Fischer Tropsch (FT), cellulose hydrotreating jet fuel (CHJ) and traditional jet fuel (RP-3), were investigated spray performance. According to empirical equation deduced from experiment data (283 K-343 K), deviations to RP-3 enhanced significantly on surface tension and viscosity at low temperature aera (243 K-273 K). As the complex and discontinuous interaction between nozzle structure and fuel properties with temperature, and thus it is difficult to obtain appropriate empirical equation or simulation results at low temperature. Moreover, non-drop-in fuel like pure FT fuel cannot comply with the same spray mechanism as drop-in fuel. The artificial neural network (ANN) approaches have been involved to solve the complex relationship of properties with spray performance. ANN-spray model coupling with ANN-mass flow can predict not only cone angle and liquid length but also SMD and velocity in liquid zone and droplet zone with above 0.99 total correlation coefficient. Coupling simulation results of mass flow and spray performance, FT and CHJ as well as blend fuels present more obvious difference to RP-3 in droplet size distribution and velocity distribution at low temperature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634133PMC
http://dx.doi.org/10.1186/s13068-023-02408-xDOI Listing

Publication Analysis

Top Keywords

spray performance
16
low temperature
16
fuel
14
alternative aviation
12
aviation fuel
12
fuel properties
12
jet fuel
12
drop-in fuel
8
traditional jet
8
empirical equation
8

Similar Publications