98%
921
2 minutes
20
Background: Sub-clinical inflammation in hyperglycemia is tied to the pathogenesis of diabetic kidney disease (DKD). Though well known for its immunostimulatory function, the significance of extracellular heat shock protein 72 (eHSP72) in DKD is not well studied. We aimed to determine the association of extracellular HSP72 with systemic inflammation and the progression of DKD, and explore its possible clinical significance in DKD.
Methods: 160 type 2 diabetic individuals were enrolled in the study. Their anthropometric data, routine biochemical parameters, urinary renal function parameters, and blood count parameters were estimated. Plasma from patients' blood samples were used to estimate HSP72 and interleukin 1β (IL-1β) using sandwich immunoassays.
Results: Plasma eHSP72 is elevated in DKD. Pairwise comparisons showed the drastic elevation of eHSP72 in the presence of albuminuria. A significant positive relationship was observed between plasma levels of eHSP72 and IL-1β. eHSP72 levels did not statistically differ between micro and macro-albuminuric DKD. However, it was inversely associated with estimated glomerular filtration rate, the index of disease severity, independent of age, gender, diabetes duration and absolute monocyte count. At a cutoff of 0.52 ng/ml, with sensitivity of 64.1 % and specificity of 69.2 %, plasma eHSP72 differentiated the presence of DKD in type 2 diabetics with statistical significance.
Conclusion: The positive relationship of eHSP72 and IL-1β with worsening DKD likely indicates their participation in immunostimulatory pathways of renal fibrosis. eHSP72 may be closely linked to albuminuria-induced tubular injury and likely contributes to fibrotic changes in the progression of DKD. From our study, we infer the possible clinical significance of eHSP72 as a marker of sub-clinical renal damage in DKD, and the implication of IL-1β-associated mechanisms in DKD progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinbiochem.2023.110682 | DOI Listing |
PLoS One
September 2025
Department of Nephrology, Chungnam National University, Daejeon, Republic of Korea.
Diabetic kidney disease (DKD) involves oxidative stress-driven damage to glomeruli (Gloms) and proximal convoluted tubules (PCT). NAD(P)H: quinone oxidoreductase 1 (NQO1) regulates redox balance, but its compartment-specific role remains unclear. Streptozotocin (STZ)-induced hyperglycemia increased albuminuria and foot process effacement, with NQO1 KO (NKO) mice exhibiting greater podocyte injury than WT, indicating exacerbated glomerular damage.
View Article and Find Full Text PDFIntroduction: The residual risk of chronic kidney disease (CKD) progression remains high in clinical trials of kidney protective drugs in patients with diabetic kidney disease (DKD).
Methods: In a prospective study, we assessed whether 16 plasma and 10 urine cytokine levels can inform the residual risk of CKD progression in 93 incident patients with DKD treated by Nephrology according to clinical guidelines.
Results: Plasma and urine levels of 12 plasma and 7 urinary cytokines differed between patients with DKD and from healthy controls.
Nephrol Dial Transplant
September 2025
Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Background: We investigated circulating protein profiles and molecular pathways among various chronic kidney disease (CKD) etiologies to study its underlying molecular heterogeneity.
Methods: We conducted a proteomic biomarker analysis in the DAPA-CKD trial recruiting adults with and without type 2 diabetes with an eGFR of 25 to 75 mL/min/1.73m2 and a UACR of 200 to 5000 mg/g.
J Nephrol
September 2025
Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Nishi-cho 36-1, Yonago, Tottori, 683-8504, Japan.
Background: Chronic kidney disease (CKD) is a public health concern; kidney size correlates with kidney function, except in diabetic kidney disease (DKD), where the kidney enlarges, limiting morphological measurement applications in CKD management. However, cortical size changes in DKD along with CKD progression remain understudied. We investigated kidney morphology alterations in patients with and without diabetes and established a regression equation for kidney function incorporating morphological alterations.
View Article and Find Full Text PDFRen Fail
December 2025
Department of Nephrology, China-Japan Friendship Hospital, Beijing, China.
Objectives: In this study, we explored the mechanism by which DDIT4 influences the polarization phenotypic transformation of macrophages and inflammation through the regulation of mTOR signaling pathway, providing a new mechanism and target for the treatment of diabetic nephropathy.
Methods: The degree of inflammation and injury in renal tissues of diabetic kidney disease (DKD) animal model was evaluated using biochemical assays, renal pathology examinations, and Western blot tests. Podocytes and macrophages were isolated from renal tissues to observe the extent of podocyte injury and the quantity and polarization phenotype of macrophage infiltration.