Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Aims: Peroxisome Proliferator-Activated Receptor α (PPARα) is a key regulator of hepatic lipid metabolism and therefore a promising therapeutic target against Metabolic-dysfunction Associated Steatotic Liver Diseases (MASLD). However, its expression and activity decrease during disease progression and several of its agonists did not achieve sufficient efficiency in clinical trials with, surprisingly, a lack of steatosis improvement. Here, we identified the Human leukocyte antigen-F Adjacent Transcript 10 (FAT10) as an inhibitor of PPARα lipid metabolic activity during MASLD progression.

Approach And Results: In vivo, the expression of FAT10 is upregulated in human and murine MASLD livers upon disease progression and correlates negatively with PPARα expression. The increase of FAT10 occurs in hepatocytes in which both proteins interact. FAT10 silencing in vitro in hepatocytes increases PPARα target gene expression, promotes fatty acid oxidation and decreases intra-cellular lipid droplet content. In line, FAT10 overexpression in hepatocytes in vivo inhibits the lipid regulatory activity of PPARα in response to fasting and agonist treatment in conditions of physiological and pathological hepatic lipid overload.

Conclusions: FAT10 is induced during MASLD development and interacts with PPARα resulting in a decreased lipid metabolic response of PPARα to fasting or agonist treatment. Inhibition of the FAT10-PPARα interaction may provide a means to design potential therapeutic strategies against MASLD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.metabol.2023.155720DOI Listing

Publication Analysis

Top Keywords

fat10 induced
8
induced masld
8
pparα
8
activity pparα
8
hepatic lipid
8
disease progression
8
lipid metabolic
8
fasting agonist
8
agonist treatment
8
fat10
7

Similar Publications

Introduction: The presentation of pathogen-derived antigens on major histocompatibility complex (MHC) class I is crucial for the antiviral immune response. Degradation of intracellular pathogen-derived proteins by the 26S proteasome generates peptides that can be loaded on MHC-I molecules and presented to cytotoxic T cells. The cytokine-inducible ubiquitin-like modifier (ULM) HLA-F adjacent transcript 10 (FAT10) is encoded in the MHC locus and targets its substrates for proteasomal degradation.

View Article and Find Full Text PDF

FATS alleviates ulcerative colitis by inhibiting M1 macrophage polarization and aerobic glycolysis through promoting the ubiquitination-mediated degradation of HIF-1α.

Biochem Pharmacol

October 2025

Tianjin Nankai Hospital, Tianjin Medical University, 300110 Tianjin, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, 300110 Tianjin, China; Institute of Integrative Medicine for Acute Abdominal Diseases, 300110 Tianjin, China. Electronic address: zhan

Ulcerative colitis (UC) represents a challenging disorder characterized by a multifaceted pathogenesis. Macrophages, the predominant immune cell population in the intestinal milieu of individuals with UC, play a pivotal role in sustaining intestinal homeostasis. Common fragile sites (CFSs) are evolutionarily preserved genomic segments that exhibit a propensity for breakage and are present in all human beings.

View Article and Find Full Text PDF

The ubiquitin-like modifier FAT10 is strongly expressed in dendritic cells (DCs) and upregulated during inflammation. Interleukin (IL)-12 plays a critical role in promoting CD4+ T cell differentiation into Th1 cells and in IFN-γ induction in T cells. Previously, it was shown that FAT10 is required for IFN-γ expression of activated T cells.

View Article and Find Full Text PDF

Tumor necrosis factor ɑ (TNFɑ)-induced protein 3 (TNFAIP3)-interacting protein 1 (TNIP1) is genetically and functionally linked to limiting auto-immune and inflammatory responses. We have shown that TNIP1 (alias A20-binding inhibitor of NF-κB 1, ABIN1), functioning as a hub location to coordinate other proteins in repressing inflammatory signaling, aligns with biophysical traits indicative of its being an intrinsically disordered protein (IDP). IDPs move through a repertoire of three-dimensional structures rather than being in one set conformation.

View Article and Find Full Text PDF

The proteasome controls levels of most cellular proteins, and its activity is regulated under stress, quiescence, and inflammation. However, factors determining the proteasomal degradation rate remain poorly understood. Proteasome substrates are conjugated with small proteins (tags) like ubiquitin and Fat10 to target them to the proteasome.

View Article and Find Full Text PDF