Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Drugs targeting cyclin-dependent kinases 4 and 6 (CDK4/6) are promising new treatments for melanoma and other solid malignancies. In studies on CDK4/6 inhibitor resistance, protein arginine methyltransferase 5 (PRMT5) regulation of alternative splicing was shown to be an important downstream component of the CDK4/6 pathway. However, the full effects of inhibition of CDK4/6 on splicing events in melanoma and the extent to which they are dependent on PRMT5 has not been established. We performed full-length mRNA sequencing on CHL1 and A375 melanoma cell lines treated with the CDK4/6 inhibitor palbociclib and the PRMT5 inhibitor GSK3326595 and analysed data for differential gene expression and differential pre-mRNA splicing induced by these agents. Changes in gene expression and RNA splicing were more extensive under PRMT5 inhibition than under CDK4/6 inhibition. Although PRMT5 inhibition and CDK4/6 inhibition induced common RNA splicing events and gene expression profiles, the majority of events induced by CDK4/6 inhibition were distinct. Our findings indicate CDK4/6 has the ability to regulate alternative splicing in a manner that is distinct from PRMT5 inhibition, resulting in divergent changes in gene expression under each therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621831PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292278PLOS

Publication Analysis

Top Keywords

cdk4/6 inhibition
16
gene expression
16
alternative splicing
12
inhibition cdk4/6
12
prmt5 inhibition
12
cdk4/6
9
inhibition
8
cdk4/6 inhibitor
8
splicing events
8
changes gene
8

Similar Publications

The addition of CDK4/6 inhibitors to endocrine therapy has significantly improved outcomes in HR+/HER2- breast cancer. However, variable patient responses and acquired resistance remain a clinical challenge. We therefore defined the comprehensive molecular response to palbociclib, the most clinically used CDK4/6 inhibitor.

View Article and Find Full Text PDF

Combined treatment with CDK4/6, CDK2, and CXCR1/2 inhibitors effectively halts the growth of BRAF wild-type melanoma tumors.

Front Oncol

August 2025

Tennessee Valley Healthcare System (TVHS) Department of Veterans Affairs, Nashville, TN, United States.

Introduction: Inhibitors of cyclin-dependent kinase 4 and 6 (CDK4/6) are approved for the treatment of locally advanced or metastatic breast cancer, but not for melanoma.

Methods: In this study, we evaluated the effectiveness of the CDK4/6 inhibitor, palbociclib, the CDK2 inhibitor, PF-07104091, the dual CXCR1 and CXCR2 (CXCR1/2) antagonist, SX-682, and the combination of these inhibitors for effective treatment of melanoma in preclinical models.

Results: Both palbociclib and SX-682 inhibited the growth of BRAF/NRAS B16-F10 and NRAS 1014 melanoma tumors and in both models, SX-682 created a more anti-tumor immune microenvironment.

View Article and Find Full Text PDF

Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) play crucial roles in regulating cell growth and brain development. Dysregulation of these kinases is linked to disorders like Down syndrome and cancers. The selective inhibition of DYRK1A over other isoforms remains a significant challenge due to their high structural similarity.

View Article and Find Full Text PDF

TP53-agnostic lethality through combined pan-HDAC and CDK inhibition in acute myeloid leukemia.

Cancer Lett

September 2025

Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:

Tumor protein 53 (TP53)-mutated acute myeloid leukemia (AML) is characterized by poor outcomes and the quick development of treatment resistance. Here, we report that simultaneous inhibition of cyclin-dependent kinases (CDKs) and histone deacetylases (HDACs) with dinaciclib and CAY10603, respectively, eliminates the therapeutic response gap between TP53-mutant and TP53 wild-type AML. Biochemical profiling showed that CAY10603 is not only HDAC6-selective but also exhibits pan-HDAC activity similar to suberoylanilide hydroxamic acid, enabling dual targeting of transcriptional and cell cycle pathways.

View Article and Find Full Text PDF