98%
921
2 minutes
20
Enantiodiscrimination with single-molecule and single-shot resolution is fundamental for the understanding of the fate and behavior of two enantiomers in chemical reactions, biological activity, and the function of drugs. However, molecular decoherence gives rise to spectral broadening and random errors, offering major problems for most chiroptical methods in arriving at single-shot-single-molecule resolution. Here, we introduce a machine-learning strategy to solve these problems. Specifically, we focus on the task of single-shot measurement of single-molecule chirality based on enantioselective ac Stark spectroscopy. We find that, in the large-decoherence region, where the ac Stark spectroscopy without machine learning fails to distinguish molecular chirality, in contrast, the machine-learning-assisted strategy still holds a high correct rate of up to about 90%. Beyond this overwhelming superiority, the machine-learning strategy also has considerable robustness against variation of the decoherence rates between the training and testing sets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c02616 | DOI Listing |
Nat Commun
September 2025
Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany.
Precise control of spin states and spin-spin interactions in atomic-scale magnetic structures is crucial for spin-based quantum technologies. A promising architecture is molecular spin systems, which offer chemical tunability and scalability for larger structures. An essential component, in addition to the qubits themselves, is switchable qubit-qubit interactions that can be individually addressed.
View Article and Find Full Text PDFACS Nano
September 2025
Insitut für Physik and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany.
Electric gating in atomically thin field-effect devices based on transition-metal dichalcogenides has recently been employed to manipulate their excitonic states, even producing exotic phases of matter, such as an excitonic insulator or Bose-Einstein condensate. Here, we mimic the electric gating effect of a bilayer-MoS on graphite by charge transfer induced by the adsorption of molecular p- and n-type dopants. The electric fields produced are evaluated from the electronic energy-level realignment and Stark splitting determined by X-ray and UV photoelectron spectroscopy measurements and compare very well with literature values obtained by optical spectroscopy for similar systems.
View Article and Find Full Text PDFRev Sci Instrum
September 2025
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA.
Rydberg atoms are widely employed in precision spectroscopy and quantum information science. To minimize atomic decoherence caused by the dc Stark effect, the electric field noise at the Rydberg atom location should be kept below ∼10 mV/cm. Here, we present a simple yet effective electronic circuit, referred to as a clamp switch, that allows one to realize such conditions.
View Article and Find Full Text PDFJACS Au
August 2025
National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China.
Tuning interfacial water structures is a fundamental yet underexplored strategy for advancing the hydrogen evolution reaction (HER) and broader electrocatalytic processes. Here, we demonstrate a universal and scalable catalytic optimization strategy via the magnetic field-driven reconfiguration of interfacial water at the molecular level. Unlike conventional magnetohydrodynamic (MHD) strategies focusing on mass transport, this work pioneers a molecular-level interfacial water structure modulation via the vibrational Stark effect (VSE), achieving intrinsic catalytic enhancement for HER.
View Article and Find Full Text PDFBiosens Bioelectron
December 2025
School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China. Electronic address:
The precise detection of ultralow-abundance biomarkers in biological matrices remains a critical challenge. Herein, we engineer a plasmonic-organic heterostructure for ultrasensitive detection of p53 gene in bio-samples. The heterostructure is formed by the self-assembly of polyethyleneimine (PEI)-functionalized covalent organic frameworks (COFs) and gold nanoparticles (Au NPs), named as COFs@PEI@Au NPs (C@P@A for short).
View Article and Find Full Text PDF