Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Most of the methods currently developed for RNA detection based on CRISPR were combined with nucleic acid amplification. As a result, such methods inevitably led to certain disadvantages such as multiple operations, expensive reagents, and amplification bias. To solve the above problems, we developed a highly sensitive and specific nucleic acid amplification-free digital detection method for SARS-CoV-2 RNA based on droplet microfluidics and CRISPR-Cas13a. In this assay, thousands of monodisperse droplets with a size of 30 μm were generated within 2 min by a negative pressure-driven microfluidic chip. By confining a single target RNA recognition event to an independent droplet, the collateral cleavage products of activated Cas13a could be accumulated in one droplet. By combining the droplet microfluidics and CRISPR-Cas13a, SARS-CoV-2 RNA could be easily detected within 30 min with a detection limit of 470 aM. The performance of this assay was verified by specificity experiments and spiking and recovery experiments with human saliva. Compared with many developed methods for SARS-CoV-2 RNA detection, our method is time- and reagent-saving and easy to operate. Taken together, this digital detection method based on droplet microfluidics and CRISPR-Cas13a provides a promising approach for RNA detection in clinical diagnostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.3c02007 | DOI Listing |