A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Copula-based risk aggregation with trapped ion quantum computers. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Copulas are mathematical tools for modeling joint probability distributions. In the past 60 years they have become an essential analysis tool on classical computers in various fields. The recent finding that copulas can be expressed as maximally entangled quantum states has revealed a promising approach to practical quantum advantages: performing tasks faster, requiring less memory, or, as we show, yielding better predictions. Studying the scalability of this quantum approach as both the precision and the number of modeled variables increase is crucial for its adoption in real-world applications. In this paper, we successfully apply a Quantum Circuit Born Machine (QCBM) based approach to modeling 3- and 4-variable copulas on trapped ion quantum computers. We study the training of QCBMs with different levels of precision and circuit design on a simulator and a state-of-the-art trapped ion quantum computer. We observe decreased training efficacy due to the increased complexity in parameter optimization as the models scale up. To address this challenge, we introduce an annealing-inspired strategy that dramatically improves the training results. In our end-to-end tests, various configurations of the quantum models make a comparable or better prediction in risk aggregation tasks than the standard classical models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613293PMC
http://dx.doi.org/10.1038/s41598-023-44151-1DOI Listing

Publication Analysis

Top Keywords

trapped ion
12
ion quantum
12
risk aggregation
8
quantum
8
quantum computers
8
copula-based risk
4
aggregation trapped
4
computers copulas
4
copulas mathematical
4
mathematical tools
4

Similar Publications