98%
921
2 minutes
20
Objective: The sensory detection of food and food cues suppresses Agouti related peptide (AgRP) neuronal activity prior to consumption with greatest suppression occurring in response to highly caloric food or interoceptive energy need. However, the interoceptive mechanisms priming an appropriate AgRP neural response to external sensory information of food availability remain unexplored. Since hunger increases plasma ghrelin, we hypothesized that ghrelin receptor (GHSR) signalling on AgRP neurons is a key interoceptive mechanism integrating energy need with external sensory cues predicting caloric availability.
Methods: We used in vivo photometry to measure the effects of ghrelin administration or fasting on AgRP neural activity with GCaMP6s and dopamine release in the nucleus accumbens with GRAB-DA in mice lacking ghrelin receptors in AgRP neurons.
Results: The deletion of GHSR on AgRP neurons prevented ghrelin-induced food intake, motivation and AgRP activity. The presentation of food (peanut butter pellet) or a wooden dowel suppressed AgRP activity in fasted WT but not mice lacking GHSRs in AgRP neurons. Similarly, peanut butter and a wooden dowel increased dopamine release in the nucleus accumbens after ip ghrelin injection in WT but not mice lacking GHSRs in AgRP neurons. No difference in dopamine release was observed in fasted mice. Finally, ip ghrelin administration did not directly increase dopamine neural activity in the ventral tegmental area.
Conclusions: Our results suggest that AgRP GHSRs integrate an interoceptive state of energy need with external sensory information to produce an optimal change in AgRP neural activity. Thus, ghrelin signalling on AgRP neurons is more than just a feedback signal to increase AgRP activity during hunger.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643323 | PMC |
http://dx.doi.org/10.1016/j.molmet.2023.101826 | DOI Listing |
Curr Biol
August 2025
Laboratory of Physiology of Behavior, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510,
Social isolation enhances sociability, suggesting that social behavior is maintained through a homeostatic mechanism. Further, mammalian social needs shift dramatically from infancy through adolescence into adulthood, raising the question of whether the neural mechanisms governing this homeostatic regulation evolve across developmental stages. Here, we show that agouti-related peptide (Agrp) neurons in the arcuate nucleus of the hypothalamus, which are known to drive hunger in adults, are activated by social isolation from weaning through adolescence but not in adulthood.
View Article and Find Full Text PDFJ Clin Invest
August 2025
Department of Medicine, Division of Endocrinology, Metabolism and Molecular, Northwestern University, Chicago, United States of America.
The incretin receptor agonists semaglutide and tirzepatide have transformed the medical management of obesity. The neural mechanisms by which incretin analogs regulate appetite remain incompletely understood, and dissecting this process is critical for the development of next-generation anti-obesity drugs that are more targeted and tolerable. Moreover, the physiologic functions of incretins in appetite regulation and gut-brain communication have remained elusive.
View Article and Find Full Text PDFRev Endocr Metab Disord
August 2025
Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, F-75013, France.
The regulation of energy homeostasis is an essential function of every living organism. In mammals a complex interplay of neural networks has evolved to ensure proper adaptation to energy demands, availability, consumption, storage and utilization. While a large set of parallel and redundant brain networks are functionally intertwined in these processes, a specific subset of hypothalamic neurons producing the agonist and antagonist of the anorectic signaling pathway controlled by the melanocortin receptor have been extensively studied.
View Article and Find Full Text PDFCommun Biol
August 2025
Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Argentina.
Hunger enhances the consumption of rewarding foods, but the neurobiological basis of this adaptation remains unclear. We hypothesize that agouti-related protein (AgRP) neurons in the hypothalamic arcuate nucleus (ARH) promote the consumption of rewarding stimuli under calorie restriction, independent of caloric content. To test this, we study mice fed 40% of their average daily intake and exposed daily to the non-caloric sweetener saccharin before feeding.
View Article and Find Full Text PDF