Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This study investigated the use of distributed optical fiber sensing to measure temperature and strain during thermomechanical processes in printed circuit board (PCB) manufacturing. An optical fiber (OF) was bonded to a PCB for simultaneous measurement of temperature and strain. Optical frequency-domain reflectometry was used to interrogate the fiber optic sensor. As the optical fiber is sensitive to both temperature and strain, a demodulation technique is required to separate both effects. Several demodulation techniques were compared to find the best one, highlighting their main limitations. The importance of good estimations of the temperature sensitivity coefficient of the OF and the coefficient of thermal expansion of the PCB was highlighted for accurate results. Furthermore, the temperature sensitivity of the bonded OF should not be neglected for accurate estimations of strains. The two-sensor combination model provided the best results, with a 2.3% error of temperature values and expected strain values. Based on this decoupling model, a methodology for measuring strain and temperature variations in PCB thermomechanical processes using a single and simple OF was developed and tested, and then applied to a trial in an industrial environment using a dynamic oven with similar characteristics to those of a reflow oven. This approach allows the measurement of the temperature profile on the PCB during oven travel and its strain state (warpage).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610684 | PMC |
http://dx.doi.org/10.3390/s23208565 | DOI Listing |