Machine Learning Techniques to Predict Timeliness of Care among Lung Cancer Patients.

Healthcare (Basel)

Department of Respiratory Medicine, Alfred Health, Melbourne, VIC 3004, Australia.

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Delays in the assessment, management, and treatment of lung cancer patients may adversely impact prognosis and survival. This study is the first to use machine learning techniques to predict the quality and timeliness of care among lung cancer patients, utilising data from the Victorian Lung Cancer Registry (VLCR) between 2011 and 2022, in Victoria, Australia. Predictor variables included demographic, clinical, hospital, and geographical socio-economic indices. Machine learning methods such as random forests, k-nearest neighbour, neural networks, and support vector machines were implemented and evaluated using 20% out-of-sample cross validations via the area under the curve (AUC). Optimal model parameters were selected based on 10-fold cross validation. There were 11,602 patients included in the analysis. Evaluated quality indicators included, primarily, overall proportion achieving "time from referral date to diagnosis date ≤ 28 days" and proportion achieving "time from diagnosis date to first treatment date (any intent) ≤ 14 days". Results showed that the support vector machine learning methods performed well, followed by nearest neighbour, based on out-of-sample AUCs of 0.89 (in-sample = 0.99) and 0.85 (in-sample = 0.99) for the first indicator, respectively. These models can be implemented in the registry databases to help healthcare workers identify patients who may not meet these indicators prospectively and enable timely interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606192PMC
http://dx.doi.org/10.3390/healthcare11202756DOI Listing

Publication Analysis

Top Keywords

machine learning
16
lung cancer
16
cancer patients
12
learning techniques
8
techniques predict
8
timeliness care
8
care lung
8
learning methods
8
support vector
8
proportion achieving
8

Similar Publications

Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.

View Article and Find Full Text PDF

The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.

View Article and Find Full Text PDF

Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.

Setting: West China Hospital of Sichuan University, China.

Design: Deep-learning study.

View Article and Find Full Text PDF

Predicting Unplanned Readmission Risk in Patients With Cirrhosis: Complication-Aware Dynamic Classifier Selection Approach.

JMIR Med Inform

September 2025

College of Medical Informatics, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, 86 13500303273.

Background: Cirrhosis is a leading cause of noncancer deaths in gastrointestinal diseases, resulting in high hospitalization and readmission rates. Early identification of high-risk patients is vital for proactive interventions and improving health care outcomes. However, the quality and integrity of real-world electronic health records (EHRs) limit their utility in developing risk assessment tools.

View Article and Find Full Text PDF

Diagnostic and Screening AI Tools in Brazil's Resource-Limited Settings: Systematic Review.

JMIR AI

September 2025

Faculty of Medicine, Universidade Federal de Alagoas, Av. Lourival Melo Mota, S/n - Tabuleiro do Martins, Maceió, 57072-900, Brazil, 558232141461.

Background: Artificial intelligence (AI) has the potential to transform global health care, with extensive application in Brazil, particularly for diagnosis and screening.

Objective: This study aimed to conduct a systematic review to understand AI applications in Brazilian health care, especially focusing on the resource-constrained environments.

Methods: A systematic review was performed.

View Article and Find Full Text PDF