A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Exploiting Differences in Heme Biosynthesis between Bacterial Species to Screen for Novel Antimicrobials. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The final three steps of heme biogenesis exhibit notable differences between di- and mono-derm bacteria. The former employs the protoporphyrin-dependent (PPD) pathway, while the latter utilizes the more recently uncovered coproporphyrin-dependent (CPD) pathway. In order to devise a rapid screen for potential inhibitors that differentiate the two pathways, the genes associated with the protoporphyrin pathway in an YFP strain were replaced with those for the CPD pathway from (SA) through a sliding modular gene replacement recombineering strategy to generate the strain -CPD-YFP. Potential inhibitors that differentially target the pathways were identified by screening compound libraries against the YFP-producing -CPD-YFP strain in comparison to a CFP-producing strain. Using a mixed strain assay, inhibitors targeting either the CPD or PPD heme pathways were identified through a decrease in one fluorescent signal but not the other. An initial screen identified both azole and prodigiosin-derived compounds that were shown to specifically target the CPD pathway and which led to the accumulation of coproheme, indicating that the main target of inhibition would appear to be the coproheme decarboxylase (ChdC) enzyme. In silico modeling highlighted that these inhibitors are able to bind within the active site of ChdC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604556PMC
http://dx.doi.org/10.3390/biom13101485DOI Listing

Publication Analysis

Top Keywords

cpd pathway
12
potential inhibitors
8
pathways identified
8
pathway
5
strain
5
exploiting differences
4
differences heme
4
heme biosynthesis
4
biosynthesis bacterial
4
bacterial species
4

Similar Publications