Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Individual neurons in sensory cortices exhibit specific receptive fields based on their dendritic patterns. These dendritic morphologies are established and refined during the neonatal period through activity-dependent plasticity. This process can be visualized using two-photon time-lapse imaging, but sufficient spatiotemporal resolution is essential. We previously examined dendritic patterning from spiny stellate (SS) neurons, the major type of layer 4 (L4) neurons, in the mouse primary somatosensory cortex (barrel cortex), where mature dendrites display a strong orientation bias toward the barrel center. Longitudinal imaging at 8 h intervals revealed the long-term dynamics by which SS neurons acquire this unique dendritic pattern. However, the spatiotemporal resolution was insufficient to detect the more rapid changes in SS neuron dendrite morphology during the critical neonatal period. In the current study, we imaged neonatal L4 neurons hourly for 8 h and improved the spatial resolution by uniform cell surface labeling. The improved spatiotemporal resolution allowed detection of precise changes in dendrite morphology and revealed aspects of short-term dendritic dynamics unique to the neonatal period. Basal dendrites of barrel cortex L4 neurons were highly dynamic. In particular, both barrel-inner and barrel-outer dendrites (trees and branches) emerged/elongated and disappeared/retracted at similarly high frequencies, suggesting that SS neurons acquire biased dendrite patterns through rapid trial-and-error emergence, elongation, elimination, and retraction of dendritic trees and branches. We also found correlations between morphology and behavior (elongation/retraction) of dendritic tips. Thus, the current study revealed short-term dynamics and related features of cortical neuron dendrites during refinement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10630926PMC
http://dx.doi.org/10.1523/ENEURO.0142-23.2023DOI Listing

Publication Analysis

Top Keywords

spatiotemporal resolution
16
neonatal period
12
short-term dendritic
8
dendritic dynamics
8
neurons
8
improved spatiotemporal
8
barrel cortex
8
neurons acquire
8
dendrite morphology
8
current study
8

Similar Publications

Purpose: To develop and evaluate a volumetric proton resonance frequency shift (PRF)-based thermometry method for monitoring thermal ablation in moving tissues.

Methods: A golden-angle-ordered 3D stack-of-radial MRI sequence was combined with an image-navigated multi-baseline (iNAV-MB) PRF method to reconstruct motion-compensated 3D temperature maps with high spatiotemporal resolution and volumetric coverage. Two radial MRI reconstruction techniques, k-space weighted image contrast filter (KWIC) and golden-angle radial sparse parallel (GRASP) MRI, were implemented and compared within a sliding window reconstruction framework.

View Article and Find Full Text PDF

Sensitive dissection of a genomic regulatory landscape using bulk and targeted single-cell activation.

Cell Genom

September 2025

Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; Department of Biology, Humboldt Universität Berlin, 10117 Berlin, Germany. Electronic address: uwe.ohler@mdc-berlin

Enhancers are known to spatiotemporally regulate gene transcription, yet the identification of enhancers and their target genes is often indirect, low resolution, and/or assumptive. To identify and functionally perturb enhancers at their endogenous sites, we performed a pooled tiling CRISPR activation (CRISPRa) screen surrounding PHOX2B, a master regulator of neuronal cell fate and a key player in neuroblastoma, and found many CRISPRa-responsive elements (CaREs) that alter cellular growth. To determine CaRE target genes, we developed TESLA-seq (targeted single-cell activation), which combines CRISPRa screening with targeted single-cell RNA sequencing and enables the parallel readout of the effect of hundreds of enhancers on all genes in the locus.

View Article and Find Full Text PDF

Exploring the structural diversity and spatiotemporal dynamics of mogrosides in Siraitia grosvenorii.

Food Chem

September 2025

State Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China. Electronic address:

Mogrosides are the main non-caloric sweeteners in Siraitia grosvenorii, with sweetness determined by specific chemical structures. However, the diversity of triterpenoid skeletons and glucosylation patterns suggests that the variety of mogrosides remains insufficiently characterized. Here, high-resolution mass spectrometry (HRMS) coupled with Global Natural Products Social Molecular Networking (GNPS) was used to systematically profile mogrosides.

View Article and Find Full Text PDF

Transformers have been successfully applied in the field of video-based 3D human pose estimation. However, the high computational costs of these video pose transformers (VPTs) make them impractical on resource-constrained devices. In this paper, we present a hierarchical plug-and-play pruning-and-recovering framework, called Hierarchical Hourglass Tokenizer (HOT), for efficient transformer-based 3D human pose estimation from videos.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a chronic inflammatory disease driven by endothelial dysfunction, vascular smooth muscle cell proliferation, and insufficient resolution of inflammation. Nitric oxide (NO) plays a crucial role in vascular homeostasis by promoting endothelial cell proliferation, maintaining endothelial integrity, suppressing smooth muscle cell hyperplasia, and exerting potent anti-inflammatory effects. However, clinical application of NO is hindered by its short half-life, lack of targeting, and uncontrolled release.

View Article and Find Full Text PDF