RNA-Seq-Based Transcriptome Analysis of Nitric Oxide Scavenging Response in .

J Fungi (Basel)

Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea.

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

While the biological role of naturally occurring nitric oxide (NO) in filamentous fungi has been uncovered, the underlying molecular regulatory networks remain unclear. In this study, we conducted an analysis of transcriptome profiles to investigate the initial stages of understanding these NO regulatory networks in , a well-established model filamentous fungus. Utilizing RNA sequencing, differential gene expression screening, and various functional analyses, our findings revealed that the removal of intracellular NO resulted in the differential transcription of 424 genes. Notably, the majority of these differentially expressed genes were functionally linked to processes associated with carbohydrate and amino acid metabolism. Furthermore, our analysis highlighted the prevalence of four specific protein domains (zinc finger C2H2, PLCYc, PLCXc, and SH3) in the encoded proteins of these differentially expressed genes. Through protein-protein interaction network analysis, we identified eight hub genes with substantial interaction connectivity, with and emerging as possibly major responsive genes during NO scavenging, particularly influencing vegetative growth. Additionally, our study unveiled that NO scavenging led to the inhibition of gene transcription related to a protein complex associated with ribosome biogenesis. Overall, our investigation suggests that endogenously produced NO in likely governs the transcription of genes responsible for protein complexes involved in carbohydrate and amino acid metabolism, as well as ribosomal biogenesis, ultimately impacting the growth and development of hyphae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10607626PMC
http://dx.doi.org/10.3390/jof9100985DOI Listing

Publication Analysis

Top Keywords

nitric oxide
8
regulatory networks
8
differentially expressed
8
expressed genes
8
carbohydrate amino
8
amino acid
8
acid metabolism
8
genes
6
rna-seq-based transcriptome
4
analysis
4

Similar Publications

Background: High-density lipoprotein (HDL) function, rather than its concentration, plays a crucial role in the development of coronary artery disease (CAD). Diminished HDL antioxidant properties, indicated by elevated oxidized HDL (nHDL) and diminished paraoxonase-1 (PON-1) activity, may contribute to vascular dysfunction and inflammation. Data on these associations in CAD patients, including acute coronary syndrome (ACS), remain limited.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a chronic inflammatory disease driven by endothelial dysfunction, vascular smooth muscle cell proliferation, and insufficient resolution of inflammation. Nitric oxide (NO) plays a crucial role in vascular homeostasis by promoting endothelial cell proliferation, maintaining endothelial integrity, suppressing smooth muscle cell hyperplasia, and exerting potent anti-inflammatory effects. However, clinical application of NO is hindered by its short half-life, lack of targeting, and uncontrolled release.

View Article and Find Full Text PDF

Allergic rhinitis (AR) and chronic rhinosinusitis (CRS) are common respiratory conditions that significantly impact patient health and contribute to substantial healthcare burdens. While conventional treatments offer symptom relief, many patients continue to experience persistent symptoms, side effects, or resistance to standard therapies. This highlights the growing need for novel, non-invasive, and sustainable therapeutic strategies to manage chronic airway inflammation.

View Article and Find Full Text PDF

The vascular endothelium is responsible for regulating vascular tone, maintaining fluid homeo-stasis, and preventing platelet aggregation, exhibits regulatory properties in vasorelaxation and vasoconstriction - it produces, among others, nitric oxide and endothelin. The imbalance of vasoactive molecules leads to the loss of their function, known as endothelial dysfunction. Impaired endothelial function is observed in people with metabolic disorders, often preceding the onset of the disease by several years.

View Article and Find Full Text PDF

Heart failure with reduced ejection fraction (HFrEF) is a progressive condition that is associated with high rates of morbidity, frequent hospitalizations, and significant mortality. Despite advancements in guideline-directed medical therapy (GDMT), many patients continue to be at risk for worsening heart failure (WHF). Vericiguat is a novel soluble guanylate cyclase (sGC) stimulator that targets the impaired nitric oxide (NO)-sGC-cyclic guanosine monophosphate (cGMP) pathway.

View Article and Find Full Text PDF