Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Melatonin (MT), a pineal gland hormone, regulates the sleep/wake cycle and is a potential biomarker for neurodegenerative disorders, depression, hypertension, and several cancers, including prostate cancer and hepatocarcinoma. The amperometric detection of MT was achieved using a sensor customized with ruthenium-incorporated carbon spheres (Ru-CS), possessing C- and O-rich catalytically active Ru surfaces. The non-covalent interactions and ion-molecule adducts between Ru and CS favor the formation of heterojunctions at the sensor-analyte interface, thus accelerating the reactions towards MT. The Ru-CS/Screen-printed carbon electrode (SPCE) sensor demonstrated the outstanding electrocatalytic oxidation of MT owing to its high surface area and heterogeneous rate constants and afforded a lower detection limit (0.27 μM), high sensitivity (0.85 μA μM cm), and excellent selectivity for MT with the co-existence of crucial neurotransmitters, including norepinephrine, epinephrine, dopamine, and serotonin. High concentrations of active biomolecules, such as ascorbic acid and tyrosine, did not interfere with MT detection. The practical feasibility of the sensor for MT detection in pharmaceutical samples was demonstrated, comparable to the data provided on the product labels. The developed amperometric sensor is highly suitable for the quality control of medicines because of its low cost, simplicity, small sample size, speed of analysis, and potential for automation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605478PMC
http://dx.doi.org/10.3390/bios13100936DOI Listing

Publication Analysis

Top Keywords

amperometric detection
8
sensor
5
detection
5
ruthenium-anchored carbon
4
carbon sphere-customized
4
sphere-customized sensor
4
sensor selective
4
selective amperometric
4
detection melatonin
4
melatonin melatonin
4

Similar Publications

Carbon fiber nanotip electrodes (CFNEs) are crucial for electrochemical recordings of neurotransmission release in confined spaces, such as synapses and intracellular measurements. However, fabricating CFNEs with small surface area to minimize noise remains challenging due to inconsistent tip size control, low reproducibility, and low fabrication success rate. Here, we present a reliable, user-friendly method with high reproducibility and success rate for precise CFNE fabrication using microscopy-guided electrochemical etching of cylindrical carbon fiber microelectrodes in a potassium hydroxide droplet.

View Article and Find Full Text PDF

Coordination polymers (CPs) can be used as supporting materials for enzyme immobilization to overcome limitations arising from mass transfer barriers, active site blocking, and low enzyme loading, as previously demonstrated, employing metal-organic frameworks (MOFs). We report on a new composite containing glucose oxidase (GOD) and ZIF-7-III (Zn(bIm)), focusing on three aspects: formation, optimization of catalytic properties, and application. The immobilization of GOD on ZIF-7-III at room temperature was systematically studied by varying the amount of GOD and the reaction time.

View Article and Find Full Text PDF

Novel ultrafine carboxyl-functionalized carbon nanofiber derived from nata de coco for electrochemical nitrite sensing in ultra-processed food and drinking water.

Food Chem

August 2025

Center of Excellence for Trace Analysis and Biosensor, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Innovation in Chemis

Nitrite (NO) is used in food production. High levels of NO intake pose health risks from carcinogenic nitrosamines. This research presents an electrochemical sensor that detects NO in ultra-processed foods and drinking water using a novel ultrafine carboxyl-functionalized carbon nanofiber (f-CNF) as an electrocatalyst.

View Article and Find Full Text PDF

An Amperometric Enzyme-Nanozyme Biosensor for Glucose Detection.

Biosensors (Basel)

August 2025

NanoTechnas-Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania.

Amperometric biosensors, due to their high sensitivity, fast response time, low cost, simple control, miniaturization capabilities, and other advantages, are receiving significant attention in the field of medical diagnostics, especially in monitoring blood glucose levels in diabetic patients. In this study, an amperometric glucose biosensor based on immobilized enzyme glucose oxidase (GOx) and bimetallic platinum cobalt (PtCo) nanoparticles was developed. The PtCo nanoparticles, deposited on a graphite rod electrode, exhibited peroxidase-like catalytic properties and were able to electrocatalyze the reduction of HO.

View Article and Find Full Text PDF

Timely and precise monitoring of inflammatory biomarkers is essential for the effective management of sepsis and related acute conditions. Current monitoring strategies depend mostly on centralized, benchtop systems. Here, we present compact and bioelectronic sensor platforms capable of rapid and simultaneous detection of lactate and interleukin-6 (IL-6) in human serum and interstitial fluid.

View Article and Find Full Text PDF