Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alzheimer's disease (AD) exhibits spatially heterogeneous 3R/4R tau pathology distributions across participants, making it a challenge to quantify extent of tau deposition. Utilizing Tau-PET from three independent cohorts, we trained and validated a machine learning model to identify visually positive Tau-PET scans from regional SUVR values and developed a novel summary measure, THETA, that accounts for heterogeneity in tau deposition. The model for identification of tau positivity achieved a balanced test accuracy of 95% and accuracy of ≥87% on the validation datasets. THETA captured heterogeneity of tau deposition, had better association with clinical measures, and corresponded better with visual assessments in comparison with the temporal meta-region-of-interest Tau-PET quantification methods. Our novel approach aids in identification of positive Tau-PET scans and provides a quantitative summary measure, THETA, that effectively captures the heterogeneous tau deposition seen in AD. The application of THETA for quantifying Tau-PET in AD exhibits great potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10602128PMC
http://dx.doi.org/10.21203/rs.3.rs-3290598/v1DOI Listing

Publication Analysis

Top Keywords

tau deposition
16
summary measure
12
tau-pet quantification
8
alzheimer's disease
8
machine learning
8
positive tau-pet
8
tau-pet scans
8
measure theta
8
heterogeneity tau
8
tau
7

Similar Publications

Introduction: The development of new drugs for Alzheimer's disease (AD) remains a major challenge due to the disorder's complex and multifactorial nature. 2'-Fucosyllactose (2'-FL), a human milk oligosaccharide, has demonstrated promising neuroprotective properties. However, its effects on AD-related cognitive decline are not yet fully understood.

View Article and Find Full Text PDF

Peripheral Inflammation Is Associated With Greater Neuronal Injury and Lower Episodic Memory Among Late Middle-Aged Adults.

J Neurochem

September 2025

Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Elucidating the earliest biological mechanisms underlying Alzheimer's disease (AD) is critical for advancing early detection strategies. While amyloid-β (Aβ) and tau pathologies have been central to preclinical AD research, the roles of peripheral biological processes in disease initiation remain underexplored. We investigated patterns of F-MK6240 tau positron emission tomography (PET) and peripheral inflammation across stages defined by Aβ burden and neuronal injury in n = 132 (64.

View Article and Find Full Text PDF

Antibody Therapies for Alzheimer's Disease: A New Strategy for Targeted Therapy and Blood-Brain Barrier Delivery.

ACS Chem Neurosci

September 2025

Institute of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21215, United States.

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive impairment and neuronal loss, with pathological hallmarks including Aβ plaque deposition and tau tangles. At present, the early diagnosis and treatment of AD still face great challenges, such as limited diagnostic methods, difficulty in blood-brain barrier (BBB) penetration, complex disease mechanisms, and lack of highly effective targeted therapies. Antibody drugs have shown broad prospects in the field of AD due to their high specificity, engineering and multifunctional therapeutic potential, include targeted Aβ clearance, tau pathological regulation, imaging probes, and blood biomarkers.

View Article and Find Full Text PDF

The distribution of tau pathology in Alzheimer's disease (AD) shows remarkable inter-individual heterogeneity, including hemispheric asymmetry. However, the factors driving this asymmetry remain poorly understood. Here we explore whether tau asymmetry is linked to i) reduced inter-hemispheric brain connectivity (potentially restricting tau spread), or ii) asymmetry in amyloid-beta (Aβ) distribution (indicating greater hemisphere-specific vulnerability to AD pathology).

View Article and Find Full Text PDF

Currently, the causes for Alzheimer Disease (AD) are thought to lie in the formation of abnormal protein deposits including tau tangles and Amyloid ß (Aβ) plaques in the human cortex. These proteins are believed to accumulate in the brain due to impaired waste removal resulting in neurodegeneration. In an alternative hypothesis we have recently proposed the existence of an aquaporin4 aqua channel (AQP4)-expressing tanycyte-derived canal network that likely internalizes waste for removal from the brain.

View Article and Find Full Text PDF