Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Increasingly, environmental research efforts seek to understand how the continuous input of microplastics into terrestrial environments alters soil physicochemical properties and affects plants and other soil biota. However, fundamental understanding is hampered by the destructive nature of current analytical techniques, which typically require the disruption of soil samples and often the removal of soil organic matter. This results in the irretrievable loss of essential information about soil microstructure and the spatial distribution of microplastic particles. We showed that the non-invasive approach of dual neutron and X-ray tomography is capable of detecting and localizing microplastics embedded in soil environments with organic components, here tested with peat, charcoal, and bark mulch additions. We explored how the number of microplastic particles can be determined on intact samples, even accompanied by add-on information on the size, shape and distribution of microplastic particles. For some combinations of plastic types and organic material amendments, the basic approach was not successful, but could be enhanced by soaking the sample in hydrogen peroxide solution while largely preserving the integrity of the microstructure, or by including shape parameters into the image analysis. By segmenting images using region growing, we were able to identify all microplastic particles without false positives, even in the presence of organic material. We also succeeded in analyzing small-sized microplastic particles, such as film or fibers, embedded in natural sandy soil. 3D visualization of plastic film fragments together with the soil matrix made it obvious that larger fragments can have a significant impact on soil hydraulic properties. It has also been shown that a group of microplastic fibers can induce a planar crack in the soil matrix. Finally, roots and microplastics could be differentiated and visualized in a soil sample, demonstrating the leeway for the non-invasive study of potential interactions between roots and microplastics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.167927DOI Listing

Publication Analysis

Top Keywords

microplastic particles
24
soil
12
sandy soil
8
distribution microplastic
8
organic material
8
soil matrix
8
roots microplastics
8
microplastic
7
particles
6
non-invasive analysis
4

Similar Publications

Uptake and ecotoxicity of microplastics of different particle sizes in crop species.

NanoImpact

September 2025

Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun 136100, China. Electronic address:

Microplastics (MPs) pollution threatens aquatic and terrestrial ecosystems. Herein, we assessed the uptake of MPs in seedling roots of three crop species exposed to small (0.2 μm) and large (1.

View Article and Find Full Text PDF

The protocol presented here enables the quantification of microplastics (MPs) as small as ~1 µm in diameter, accurate identification of polymer types, and estimation of particle volume, critically allowing for the calculation of MP mass. Representative results from samples collected in the Great South Bay (GSB), NY, showed that particles within the 1-6 µm equivalent spherical diameter (ESD) range were the most abundant, with approximately 75% of particles measuring less than 5 µm. Notably, the pre-sieving step failed to yield any particles larger than 60 µm, suggesting that large MPs were rare at the coastal sites sampled.

View Article and Find Full Text PDF

Several micro- and nanoplastic particle (MNP) traits, like polymer type, size, and shape, have been shown to influence MNP toxicity. However, the direction and strength of these moderating effects are often unclear, and generalizations from single studies are challenging to establish. Meta-analyses increase generalizability and derive more accurate and precise effect size estimates by combining measurements from published studies.

View Article and Find Full Text PDF

The environmental impact of Tire and Road Wear Particles (TRWP), arising from tire-road friction, has raised significant concerns. Like microplastics, TRWP contaminate air, water, and soil, with considerable annual emissions and runoff into freshwater ecosystems. Among TRWP compounds, 6PPD-Q, leached from tire particles, shows varying toxicity across species, notably affecting fish and invertebrates.

View Article and Find Full Text PDF

Asthma is a chronic inflammatory respiratory disease influenced by genetic and environmental factors. Emerging evidence suggests that microplastics and nanoplastics (NPs) pose significant health risks. When inhaled, these tiny particles can accumulate in the lungs, triggering inflammation, oxidative stress, and other disruptions in pulmonary function.

View Article and Find Full Text PDF