A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Synergistic and Additive Effects of Menadione in Combination with Antibiotics on Multidrug-Resistant Staphylococcus aureus: Insights from Structure-Function Analysis of Naphthoquinones. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Antimicrobial resistance (AMR) interferes with the effective treatment of infections and increases the risk of microbial spread and infection-related illness and death. The synergistic activities of combinations of antimicrobial compounds offer satisfactory approaches to some extent. Structurally diverse naphthoquinones (NQs) including menadione (-CH group at C2) exhibit substantial antimicrobial activities against multidrug-resistant (MDR) pathogens. We explored the combinations of menadione with antibiotic ciprofloxacin or ampicillin against Staphylococcus aureus and its biofilms. We found an additive (0.590 %) were also observed. However, preformed biofilms were not affected. Dent formation was also evident in S. aureus treated with the test compounds. The structure-function relationship (SFR) of NQs was used to determine and predict their activity pattern against pathogens. Analysis of 10 structurally distinct NQs revealed that the compounds with -Cl, -Br, -CH , or -OH groups displayed the lowest MICs (32-256 μg/mL). Furthermore, 1,4-NQs possessing a halogen or -CH moiety showed elevated ROS activity, whereas molecules with an -OH group affected cell integrity. Improved activity of antimicrobial combinations and SFR approaches are significant in antimicrobial therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.202300328DOI Listing

Publication Analysis

Top Keywords

staphylococcus aureus
8
antimicrobial
5
synergistic additive
4
additive effects
4
effects menadione
4
menadione combination
4
combination antibiotics
4
antibiotics multidrug-resistant
4
multidrug-resistant staphylococcus
4
aureus insights
4

Similar Publications