Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Previous research has demonstrated that rhythmic presentation of stimuli during encoding boosts subsequent recognition and is associated with distinct neural activity compared with when stimuli are presented in an arrhythmic manner. However, it is unclear whether the effect is driven by automatic entrainment to rhythm or non-rhythmic temporal prediction. This registered report presents an Electroencephalographic (EEG) study aimed at establishing the cognitive and neural mechanisms of the effect of temporal prediction on recognition. In a blocked design, stimulus onset during encoding was systematically manipulated in four conditions prior to recognition testing: rhythmic fixed (RF), rhythmic variable (RV), arrhythmic fixed (AF), and arrhythmic variable (AV). By orthogonally varying rhythm and temporal position we were able to assess their independent contributions to recognition enhancement. Our behavioural results did not replicate previous findings that show a difference in recognition memory based on temporal predictability at encoding. However, event-related potential (ERP) component analysis did show an early (N1) interaction effect of temporal position and rhythm, and later (N2 and Dm) effects driven by temporal position only. Taken together, we observed effects of temporal prediction at encoding, but these differences did not translate to later effects of memory, suggesting that effects of temporal prediction on recognition are less robust than previously thought.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cortex.2023.09.006 | DOI Listing |