98%
921
2 minutes
20
This study aimed to derive mature oocytes from murine preantral follicles cultured in a biomimetic ovary with a porcine scaffold using decellularization technology. We evaluated the DNA content and the presence of cell and extracellular matrix (ECM) components, including collagen, elastin, and glycosaminoglycans (GAGs), in decellularized (decell) porcine ovaries. The DNA content inthe decell ovarian tissues was approximately 94 % less than that in native tissues (66 ± 9.8 ng/mg vs. 1139 ± 269 ng/mg). Furthermore, the ECM component integrity was maintained in the decell ovarian tissue. The soluble collagen concentration of native ovarian tissue (native) was 195.34 ± 15.13 μg/mg (dry wt.), which was less than 878.6 ± 8.24 μg/mg for the decell ovarian tissue due to the loss of cellular mass. Hydrogels derived from decell porcine ovaries were prepared to develop an in vitro biomimetic ovary with appropriate ECM concentration (2-6 mg/mL). Scanning electron microscope (SEM) imagining revealed that the complex fiber network and porous structure were maintained in all groups treated with varying ECM concentration (2-6 mg/mL). Furthermore, rheometer analysis indicated that mechanical strength increased with ECM concentration in a dose-dependently. The preantral follicles cultured with 4 mg/mL ECM showed high rates of antral follicle (66 %) and mature oocyte (metaphase II) development (47 %). The preantral follicles cultured in a biomimetic ovary with a decell porcine scaffold showed a higher rate of antral follicle and mature oocytes than those cultured in other biomaterials such as collagen and Matrigel. In mature oocytes derived from antral follicles, meiotic spindles and nuclei were stained using a tubulin antibody and Hoechst, respectively. Two-cell embryos were developed from MII oocytes following parthenogenetic activation. Preantral follicles were cultured in a biomimetic ovary derived from the ECM of a decell porcine ovary, and embryos were generated from MII oocytes. This biomimetic ovary could contribute to restoring fertility in infertile women with reduced ovarian function, benefit mating efforts for endangered species, and maintain animals with valuable genetic traits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587716 | PMC |
http://dx.doi.org/10.1016/j.mtbio.2023.100824 | DOI Listing |
J Assist Reprod Genet
May 2025
Department of Animal Science, University of California Davis, Davis, CA, USA.
Purpose: Here, we explored poly(ethylene glycol) (PEG) bioengineered hydrogels for bovine preantral follicle culture with or without ovarian cell co-culture and examined the potential for differentiation of bovine embryonic stem cells (bESCs) towards gonadal somatic cells to develop a system better mimicking the ovarian microenvironment.
Methods: Bovine preantral follicles were first cultured in two-dimensional (2D) control or within PEG hydrogels (3D) and then co-cultured within PEG hydrogels with bovine ovarian cells (BOCs) to determine growth and viability. Finally, we tested conditions to drive differentiation of bESCs towards the intermediate mesoderm and bipotential gonad fate.
Adv Healthc Mater
May 2025
Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
Chemotherapy-induced premature ovarian insufficiency (POI) is a major cause of infertility and hormonal imbalance in young female cancer survivors. In this study, developed a biomimetic scaffold is developed that incorporates polydeoxyribonucleotide (PDRN) and melatonin to restore ovarian function. The scaffold is designed to mimic the ovarian extracellular matrix (ECM), enhancing angiogenesis, promoting antioxidant effects, and reducing reactive oxygen species (ROS).
View Article and Find Full Text PDFApoptosis
June 2025
State Key Laboratory of Female Fertility Promotion, Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.
Diminished ovarian reserve (DOR) is a challenging obstacle impacting women' fertility globally with limited treatment option. Bushen Jianpi Tiaoxue Decoction (BJTD) has shown significant efficacy and safety in treating DOR patients, yet the molecular mechanisms behind its effect remain uncertain. Our study aimed to uncover the pharmacology and signaling pathway of BJTD in cyclophosphamide (Cy)-provoked DOR mice and 4-hydroperoxy cyclophosphamide (4-HC)-irritated KGN cells (human granulosa-like cell line) damage models.
View Article and Find Full Text PDFAAPS J
November 2024
Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Avenue Hippocrate 54, Bte B1.55.03, 1200, Brussels, Belgium.
The development of advanced preclinical models is crucial for the evaluation and validation of novel therapeutic strategies in oncology. Three-dimensional (3D) microtumor models, which incorporate both cancer and stromal cells within biomimetic hydrogels, have emerged as powerful tools that more accurately replicate the complex tumor microenvironment compared to traditional two-dimensional (2D) cell culture systems. In this context, our study aims to develop 3D microtumor models by integrating cancer and stromal cells within an extracellular-matrix-mimetic hydrogel, as a physiologically accurate microtumor model that can serve as an innovative platform for advanced cancer research and drug screening.
View Article and Find Full Text PDFACS Nano
November 2024
Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China.