98%
921
2 minutes
20
Background: Myeloid cell metabolic reprogramming is a hallmark of inflammatory disease; however, its role in inflammation-induced hypercoagulability is poorly understood.
Objectives: We aimed to evaluate the role of inflammation-associated metabolic reprogramming in regulating blood coagulation.
Methods: We used novel myeloid cell-based global hemostasis assays and murine models of immunometabolic disease.
Results: Glycolysis was essential for enhanced activated myeloid cell tissue factor expression and decryption, driving increased cell-dependent thrombin generation in response to inflammatory challenge. Similarly, inhibition of glycolysis enhanced activated macrophage fibrinolytic activity through reduced plasminogen activator inhibitor 1 activity. Macrophage polarization or activation markedly increased endothelial protein C receptor (EPCR) expression on monocytes and macrophages, leading to increased myeloid cell-dependent protein C activation. Importantly, inflammation-dependent EPCR expression on tissue-resident macrophages was also observed in vivo. Adipose tissue macrophages from obese mice fed a high-fat diet exhibited significantly enhanced EPCR expression and activated protein C generation compared with macrophages isolated from the adipose tissue of healthy mice. Similarly, the induction of colitis in mice prompted infiltration of EPCR innate myeloid cells within inflamed colonic tissue that were absent from the intestinal tissue of healthy mice.
Conclusion: Collectively, this study identifies immunometabolic regulation of myeloid cell hypercoagulability, opening new therapeutic possibilities for targeted mitigation of thromboinflammatory disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtha.2023.10.006 | DOI Listing |
Commun Biol
September 2025
Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Sleep is a complex behavior regulated by various brain cell types. However, the roles of brain-resident macrophages, including microglia and CNS-associated macrophages (CAMs), particularly those derived postnatally, in sleep regulation remain poorly understood. Here, we investigated the effects of resident (embryo-derived) and repopulated (postnatally derived) brain-resident macrophages on the regulation of vigilance states in mice.
View Article and Find Full Text PDFChem Biodivers
September 2025
School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, P. R. China.
20(R)-ginsenoside Rg3 can reduce the effects of oxidative stress and cell death in cerebral ischemia‒reperfusion injury (CIRI). Neuroinflammation is crucial post-CIRI, but how 20(R)-Rg3 affects ischemia‒reperfusion-induced neuroinflammation is unclear. To study 20(R)-Rg3's effects on neuroinflammation and neuronal preservation in stroke models and explore toll-like receptor 4/myeloid differentiation factor-88/nuclear factor kappa B (TLR4/MyD88/NF-κB) pathway mechanisms.
View Article and Find Full Text PDFBlood Adv
September 2025
AP-HP, Hôpital Saint Louis and University of Paris, INSERM U944 and THEMA insitute, Paris, France.
Germline DDX41 mutations (DDX41mut) are identified in approximately 5% of myeloid malignancies with excess of blasts, representing a distinct MDS/AML entity. The disease is associated with better outcomes compared to DDX41 wild-type (DDX41WT), but patients who do not undergo allogeneic hematopoietic stem cell transplantation (HSCT) may experience late relapse. Due to the recent identification of DDX41mut, data on post-HSCT outcomes remain limited.
View Article and Find Full Text PDFCrit Care Explor
September 2025
Department of Biostatistics, University of Florida Colleges of Medicine and Public Health and Health Professions, Gainesville, FL.
Objectives Background: Monocyte anisocytosis (monocyte distribution width [MDW]) has been previously validated to predict sepsis and outcome in patients presenting in the emergency department and mixed-population ICUs. Determining sepsis in a critically ill surgical/trauma population is often difficult due to concomitant inflammation and stress. We examined whether MDW could identify sepsis among patients admitted to a surgical/trauma ICU and predict clinical outcome.
View Article and Find Full Text PDFCardiovasc Res
September 2025
Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO, USA.
Aims: Although the ability of the heart to adapt to environmental stress has been studied extensively, the molecular and cellular mechanisms responsible for cardioprotection are not yet fully understood. In this study, we sought to elucidate these mechanisms for cytoprotection using a model of stress-induced cardiomyopathy.
Methods And Results: We administered Toll-like receptor (TLR) agonists or diluent to wild-type mice and assessed for cardioprotection against injury from a high intraperitoneal dose of isoproterenol (ISO) administered 7 days later.