Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: This study aimed to describe the lineage-specific transmissibility and epidemiological migration of Mycobacterium tuberculosis in China.

Methods: We curated a large set of whole-genome sequences from 3204 M. tuberculosis isolates, including thousands of newly sequenced genomes, and applied a series of metrics to compare the transmissibility of M. tuberculosis strains between lineages and sublineages. The countrywide transmission patterns of major lineages were explored.

Results: We found that lineage 2 (L2) was the most prevalent lineage in China (85.7%), with the major sublineage 2.2.1 (80.9%), followed by lineage 4 (L4) (13.8%), which comprises major sublineages 4.2 (1.5%), 4.4 (6.2%) and 4.5 (5.8%). We showed evidence for frequent cross-regional spread and large cluster formation of L2.2.1 strains, whereas L4 strains were relatively geographically restricted in China. Next, we applied a series of genomic indices to evaluate M. tuberculosis strain transmissibility and uncovered higher transmissibility of L2.2.1 compared with the L2.2.2 and L4 sublineages. Phylogeographic analysis showed that southern, eastern, and northern China were highly connected regions for countrywide L2.2.1 strain spread.

Conclusions: The present study provides insights into the different transmission and migration patterns of the major M. tuberculosis lineages in China and highlights that transmissible L2.2.1 is a threat to tuberculosis control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijid.2023.10.015DOI Listing

Publication Analysis

Top Keywords

mycobacterium tuberculosis
8
applied series
8
patterns major
8
tuberculosis
7
china
5
transmission dynamics
4
dynamics phylogeography
4
phylogeography mycobacterium
4
tuberculosis china
4
china based
4

Similar Publications

This research work details the use of a molecular hybridization technique to create a library of four series of hydrazineyl-linked imidazo[1,2-]pyrimidine-thiazole derivatives. The structure of one of the final products, K2, was validated using single-crystal X-ray diffraction. Twenty-six novel hybrid molecules (K1-K26) were synthesized and tested for activity against the H37Rv strain.

View Article and Find Full Text PDF

Case Report: Sarcoidosis or tuberculosis? A continuous challenge.

Front Med (Lausanne)

August 2025

Department of Pulmonology, Institute of Pneumology, Bucharest, Romania.

Sarcoidosis is a multisystem granulomatous disorder of unknown etiology, characterized by the formation of non-caseating granulomas in affected tissues and organs. In over half of the cases, the disease undergoes spontaneous remission. In contrast, tuberculosis (TB) is an infectious disease caused by , which, if left untreated, can be fatal.

View Article and Find Full Text PDF

Tuberculosis (TB) is a multisystem infectious disease with both pulmonary and extrapulmonary manifestations. TB can also induce a hypercoagulable state, setting off a cascade of changes in the body, including systemic inflammation, endothelial dysfunction, and abnormalities in the coagulation and fibrinolytic pathways. Collectively, these factors significantly increase the risk of venous thromboembolism, such as deep vein thrombosis and pulmonary embolism.

View Article and Find Full Text PDF

A 27-year-old man from Ethiopia had undergone an extraction of a molar in Libya ten months earlier, after which a submental swelling developed. For that reason, an oral and maxillofacial surgery department was consulted. Clinical examination showed a tender, firm-to-the-touch, non-mobile swelling with central ulceration.

View Article and Find Full Text PDF

Molecular hybridization of isoniazid with hydrophobic aromatic moieties represents a promising strategy for the development of novel anti-tubercular therapeutics. In this study, a series of hybrid molecules (5a-i) was synthesized by linking isoniazid with aromatic sulfonate esters via a hydrazone bridge. Molecular docking studies revealed that these compounds interact effectively with the catalytic triad of the InhA enzyme (Y158, F149, and K165), suggesting their potential as InhA inhibitors.

View Article and Find Full Text PDF