98%
921
2 minutes
20
To investigate the degradation efficiency of conditioners and commercial microbial agents on estrogens (E1, 17α-E2, 17β-E2, E3, EE2, and DES) in the composting process of dairy manure, seven different treatments (RHB-BF, OSP-BF, SD-BF, MR-BF, MR-FS, MR-EM, and MR-CK) under forced ventilation conditions were composted and monitored regularly for 30 days. The results indicated that the removal rates of estrogens in seven treatments ranged from 95.35% to 99.63%, meanwhile the degradation effect of the composting process on 17β-Estradiol equivalent (EEQ) was evaluated, and the removal rate of ΣEEQ ranged from 96.42% to 99.72%. With the combined addition of rice husk biochar (RHB) or oyster shell powder (OSP) and bio-bacterial fertilizer starter cultures (BF), namely RHB-BF and OSP-BF obviously promoted the rapid degradation of estrogens. 17β-E2 was completely degraded on the fifth day of composting in OSP-BF. Microbial agents have some promotional effect and enhances the microbial degradation of synthetic estrogen (EE2, DES). According to the results of RDA, pH and EC were the main environmental factors affecting on the composition and succession of estrogen-related degrading bacteria in composting system. As predominant estrogens-degrading genera, Acinetobacter, Bacillus, and Pseudomonas effected obviously on the change of estrogens contents. The research results provide a practical reference for effective composting of dairy manure to enhancing estrogens removal and decreasing ecological risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.140312 | DOI Listing |
Mol Biol Rep
September 2025
Department of Biosciences, Integral University, Kursi Road, Lucknow, 226026, India.
Background: The river ecosystems provide habitats and source of water for a number of species including humans. The uncontrolled accumulation of pollutants in the aquatic environment enhances the development of antibiotic-resistant bacteria and genes.
Methods: Water samples were collected seasonally from different sites of Gomti and Ganga River.
Mol Biol Rep
September 2025
Department of Medical Lab Technology, College of health and medical technology, Sulaimani Polytechnic University, Sulaimani, 46001, Kurdistan Region, Iraq.
Background: Sinusitis is a common respiratory infection increasingly associated with antibiotic-resistant Staphylococcus aureus, posing significant treatment challenges. The emergence of methicillin-resistant S. aureus (MRSA) in sinus infections necessitates comprehensive profiling of resistance patterns to guide effective therapy.
View Article and Find Full Text PDFLasers Med Sci
September 2025
Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Microbial contamination of absorbable collagen membranes used in guided bone regeneration (GBR) may compromise healing outcomes. This study aimed to investigate whether the minimum inhibitory concentration (MIC) of hydrogen peroxide (HO) can improve the antibacterial effect of indocyanine green (ICG)-mediated antimicrobial photodynamic therapy (PDT) on absorbable collagen membranes while reducing the need for high HO concentrations. A laboratory-based model was developed using Streptococcus sanguinis and Staphylococcus aureus.
View Article and Find Full Text PDFJ Virol
September 2025
Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Unlabelled: There is a need for the development of broad-spectrum antiviral compounds that can act as first-line therapeutic countermeasures to emerging viral infections. Host-directed approaches present a promising avenue of development and carry the benefit of mitigating risks of viral escape mutants. We have previously found the SKI (super killer) complex to be a broad-spectrum, host-target with our lead compound ("UMB18") showing activity against influenza A virus, coronaviruses, and filoviruses.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
Department of Biology, University of Regina, Regina, Saskatchewan, Canada.
Unlabelled: Bovine respiratory disease (BRD) is the primary disease of cattle and is responsible for most of the antibiotic use in the beef industry, both for metaphylaxis and treatment. Infection prevention and targeted treatments would benefit from detecting and identifying bacterial pathogens and, ideally, assessing antibiotic sensitivity. Here, we report success refining targeted metagenomics by hybridization capture sequencing (CapSeq) to detect and genotype bacterial pathogens and genes for antibiotic resistance in BRD.
View Article and Find Full Text PDF