98%
921
2 minutes
20
Background: Osteoarthritis (OA) is the most common degenerative joint disease without an ultimate treatment. In a search for novel approaches, tissue engineering (TE) has shown great potential to be an effective way for hyaline cartilage regeneration and repair in advanced stages of OA. Recently, induced pluripotent stem cells (iPSCs) have been appointed to be essential stem cells for degenerative disease treatment because they allow a personalized medicine approach. For clinical translation, bioreactors in combination with iPSCs-engineerd cartilage could match patients needs, serve as platform for large-scale patient specific cartilage production, and be a tool for patient OA modelling and drug screening. Furthermore, to minimize in vivo experiments and improve cell differentiation and cartilage extracellular matrix (ECM) deposition, TE combines existing approaches with bioreactors.
Methods: This review summarizes the current understanding of bioreactors and the necessary parameters when they are intended for cartilage TE, focusing on the potential use of iPSCs.
Results: Bioreactors intended for cartilage TE must resemble the joint cavity niche. However, recreating human synovial joints is not trivial because the interactions between various stimuli are not entirely understood.
Conclusion: The use of mechanical and electrical stimulation to differentiate iPSCs, and maintain and test chondrocytes are key stimuli influencing hyaline cartilage homeostasis. Incorporating these stimuli to bioreactors can positively impact cartilage TE approaches and their possibility for posterior translation into the clinics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10645985 | PMC |
http://dx.doi.org/10.1007/s13770-023-00573-6 | DOI Listing |
Biologics
September 2025
Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Beijing, People's Republic of China.
Osteoarthritis (OA) is a prevalent chronic disease, characterized by progressive joint degeneration and primarily affects older adults. OA leads to reduced functional abilities, a lower quality of life, and an increased mortality rate. Currently, effective treatment options for OA are lacking.
View Article and Find Full Text PDFAesthetic Plast Surg
September 2025
Department of Otolaryngology, Masih Daneshvari Hospital, Neyavran, Darabad, Tehran, Iran.
Nasal alar reconstruction is complex due to the region's anatomy and aesthetic importance. This report describes repairing a small, full-thickness alar rim defect in a 36-year-old man using a rotational columellar skin flap with septal cartilage grafting. This single-stage technique achieved good color match, symmetry, and minimal donor-site morbidity.
View Article and Find Full Text PDFAcad Radiol
September 2025
Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan (S.K., Y.K., Y.T.).
Rationale And Objectives: The thyroid foramen (TF) is a congenital anatomical variant of the thyroid cartilage, characterized by a small opening that may transmit neurovascular structures. Although benign, TF can be misinterpreted on imaging as a cartilage fracture or tumor invasion, and may pose a surgical risk if unrecognized. Despite these potential implications, TF remains under-recognized in routine radiological practice.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
September 2025
Department of Orthopaedics, Xuyi People's Hospital, Kangda College of Nanjing Medical University, Huai'an, Jiangsu Province, China.
Interleukin-1β (IL-1β) is a central proinflammatory cytokine implicated in osteoarthritis (OA), but its precise role in chondrocyte apoptosis remains to be fully elucidated. In this study, we demonstrate that IL-1β triggers mitophagy in chondrocytes by promoting Parkin translocation and p62 recruitment to damaged mitochondria, thereby reducing mitochondrial dysfunction and apoptosis. Loss of p62 resulted in impaired mitophagy, excessive mitochondrial superoxide accumulation, and increased cell death.
View Article and Find Full Text PDFAnesthesiology
October 2025
Department of Anaesthesia and Perioperative Medicine, Guy's and St Thomas' National Health Service Foundation Trust, London, United Kingdom; Centre for Human and Applied Physiological Sciences, King's College London, London, United Kingdom.
The application of cricoid force remains controversial in modern practice. This review critically assesses the anatomic, physiologic, and contemporary clinical evidence of cricoid force application. There may be a sound anatomic basis to cricoid force application, involving occlusion of the postcricoid hypopharynx, but the physiologic basis is uncertain.
View Article and Find Full Text PDF