98%
921
2 minutes
20
Peripheral artery disease (PAD) is a prevalent cardiovascular disease with risks of limb loss. Our objective is to establish an autologous cell source for vascular regeneration to achieve limb salvage in PAD. Six PAD patients (age 50-80) were enrolled with their peripheral blood collected to derive vascular endothelial cells (ECs) with two different approaches: (1) endothelial progenitor cell (EPC) approach and (2) induced pluripotent stem cell (iPSC) approach. The iPSC approach successfully generated patient-specific ECs for all PAD patients, while the EPC approach did not yield any colony-forming ECs in any of the patients. The patient-derived iPSC-ECs expressed endothelial markers and exhibited endothelial functions. However, elevated inflammatory status with VCAM-1 expression was observed in the patient-derived cells. Pharmacological treatment with resveratrol resulted in patient-specific responses in cell viability and VCAM-1 expression. Our study demonstrates the potential of iPSC-ECs for autologous regenerative therapy in PAD, offering promise for personalized treatments for ischemic PAD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12265-023-10452-z | DOI Listing |
Haematologica
September 2025
Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama.
Idiopathic multicentric Castleman disease (iMCD) is a rare lymphoproliferative disorder characterized by systemic inflammation and lymphadenopathy. Two major clinical subtypes, idiopathic plasmacytic lymphadenopathy (iMCD-IPL) and iMCD with thrombocytopenia, anasarca, fever, renal dysfunction/reticulin fibrosis, and organomegaly (iMCD-TAFRO), exhibit distinct pathophysiologic mechanisms. While interleukin-6 (IL-6) is known to be elevated in iMCD, the differences in IL-6 production sources between subtypes remain unclear.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2025
Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, MA (K. Cui, B.Z., B.W., S.E.-B., A.V., H.C.).
Background: Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-laden foam cells and plaques within the arterial wall. Dysfunctional vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells, and macrophages contribute to disease progression. Here, we report that macrophage-specific expression of epsins, highly conserved endocytic adaptor proteins involved in clathrin-mediated endocytosis, accelerates atherosclerosis in Western diet-fed mice.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2025
Faculty of Medicine, Department of Physiology, University of Iceland, Reykjavik (G.K.).
Biological sex influences the life course development of blood pressure, systemic arterial hypertension, and hypertension-associated complications through neural, hormonal, renal, and epigenetic mechanisms. Sex hormones influence blood pressure regulation through interaction with several main regulatory systems, including the autonomic nervous system, the renin-angiotensin-aldosterone system, endothelin, and renal mechanisms. The modulation of vascular function by sex hormones varies over the lifespan.
View Article and Find Full Text PDFDiabetes Obes Metab
September 2025
Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
Background: Diabetic retinopathy (DR) is a major complication of diabetes mellitus, characterised by retinal vasculopathy and oxidative stress. Semaglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), has demonstrated cardiovascular benefits but has also been associated with mixed effects on DR progression. This study investigates the potential of semaglutide to attenuate DR progression by ameliorating retinal vasculopathy and oxidative stress in both in vivo and in vitro models.
View Article and Find Full Text PDFStem Cell Rev Rep
September 2025
Paris Cité University, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France.
Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.
View Article and Find Full Text PDF