98%
921
2 minutes
20
A simple and flexible fabrication method of paper SERS substrate was developed by nanoparticles (NPs) droplet self-assembly at the paper tip with a temperature gradient (PTTG). We turned the drawback of the coffee ring effect into an effective way of preparing paper SERS substrate. When the NPs droplets were continuously dripped onto the PTTG, NPs were densely and uniformly distributed at the paper-tip front based on the combination of gravity and the coffee ring effect, which could achieve 91.2-fold improvement of SERS performance compared to a flat filter paper. Meanwhile, the analytes could also be enriched at the paper-tip front, which could achieve 9.3-fold signal enhancement compared to the paper-tip tail. Thus, the PTTG realized an excellent signal amplification for SERS detection. The paper-tip SERS substrate combined with a portable Raman spectrometer yielded an excellent analytical enhancement factor of 1.15 × 10 with the detection limit of 10 nM Rhodamine 6G (R6G). The whole fabrication procedure was completed within 2 h, and the paper-tip substrate showed a satisfactory substrate-to-substrate reproducibility with a relative standard deviation (RSD) of 5.13% (n = 10). It was successfully applied for quantitatively detecting real samples of oxytetracycline and malachite green with recoveries of 83.84-105.25% (n = 3). Meanwhile, we further evaluated the SERS performance of the PTTG using a laboratory-based Raman spectrometer, and it could realize the detection as low as 10 pM R6G. The proposed paper-tip substrate would offer a promising potential application for the on-site SERS analysis of food safety and environmental health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2023.341872 | DOI Listing |
Chem Commun (Camb)
November 2024
School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China.
Anal Chim Acta
July 2024
Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China.
Background: Okadaic acid (OA), as a diarrhetic shellfish poisoning, can increase the risk of acute carcinogenic or teratogenic effects for the ingestion of OA contaminated shellfish. At present, much effort has been made to graft immunoassay onto a paper substrate to make paper-based sensors for rapid and simple detection of shellfish toxin. However, the complicated washing steps and low protein fixation efficiency on the paper substrate need to be further addressed.
View Article and Find Full Text PDFMolecules
October 2023
Department of Chemistry, Dongguk University, Seoul 04620, Republic of Korea.
Paper spray ionization mass spectrometry (PSI MS) has emerged as a notable method for the rapid analysis of biological samples. However, the typical cellulose-based paper tip is incompatible with protein detection due to the strong interaction between cellulose hydroxyl groups and proteins. In this study, we utilized a commercially available polyolefin-based synthetic paper, Teslin, as an alternative PSI substrate for simple protein analysis.
View Article and Find Full Text PDFAnal Chim Acta
November 2023
Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), No. 72, Binhai Road, Jimo District, Qingdao, Shandong Province, 266237, China.
A simple and flexible fabrication method of paper SERS substrate was developed by nanoparticles (NPs) droplet self-assembly at the paper tip with a temperature gradient (PTTG). We turned the drawback of the coffee ring effect into an effective way of preparing paper SERS substrate. When the NPs droplets were continuously dripped onto the PTTG, NPs were densely and uniformly distributed at the paper-tip front based on the combination of gravity and the coffee ring effect, which could achieve 91.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
February 2019
Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China (USTC), Hefei, 230026, China.
Rationale: Paper spray (PS) has been developed as a method of choice for point-of-care analysis in many real cases, where its applications can be further expanded with delicate high-throughput design. To achieve this goal, we developed a new PS regime, with the assembly of an induced high voltage into the ion source. Compared with regular DC high voltage, the newly developed setup is capable of high-throughput, simple configuration and rapid switching between individual papers without complicated electric/mechanic design.
View Article and Find Full Text PDF