Defining the Conformational Ensembles Associated with Ligand Binding to Cyclooxygenase-2.

Biochemistry

Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, the State University of New York, Buffalo, New York 14203, United States.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cyclooxygenases (COX) catalyze the committed step in the production of prostaglandins responsible for the maintenance of physiological homeostasis. While crystal structures of COX in complex with substrates and inhibitors have provided insight into the molecular interactions governing their binding, they have not uncovered specific details related to the protein conformational motions responsible for important aspects of the COX function. We created a cysteine-free COX-2 construct and introduced a free cysteine at position-122 to enable labeling with 3-bromo-1,1,1-trifluoroacetone (BTFA). Placement of the label adjacent to the cyclooxygenase channel entrance permitted the detection of alterations upon ligand binding. F-nuclear magnetic resonance spectroscopy (F-NMR) was then used to probe the conformational ensembles arising from BTFA-labeled COX-2 constructs in the presence and absence of ligands known to allosterically activate or inhibit COX-2. F-NMR analyses performed in the presence of the time-dependent inhibitor flurbiprofen, as well as Arg-120, Tyr-355, and Glu-524 mutations, led to the classification of two ensembles as representing the relaxed and tightened states of the cyclooxygenase channel entrance. A third ensemble, generated in the presence of arachidonic acid and the Y355F mutant and modulated by the allosteric potentiators palmitic acid and oleic acid and the nonallosteric substrates 2-arachidonoyl glycerol ether and anandamide, was classified as being related to the allosteric regulation of COX activity. The ensemble-based insight into COX function demonstrated here complements the static information derived from crystal structure analyses, collectively providing a more detailed framework of the dynamics involved in the regulation of COX catalysis and inhibition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425902PMC
http://dx.doi.org/10.1021/acs.biochem.3c00341DOI Listing

Publication Analysis

Top Keywords

conformational ensembles
8
ligand binding
8
cox function
8
cyclooxygenase channel
8
channel entrance
8
regulation cox
8
cox
6
defining conformational
4
ensembles associated
4
associated ligand
4

Similar Publications

RNA G-quadruplexes (rG4s) are emerging as vital structural elements involved in processes like gene regulation, translation, and genome stability. Found in untranslated regions of messenger RNAs (mRNAs), they influence translation efficiency and mRNA localization. Additionally, rG4s of long noncoding RNAs and telomeric RNA play roles in RNA processing and cellular aging.

View Article and Find Full Text PDF

The E76K mutation in protein tyrosine phosphatase (PTP) SHP2 is a recurrent driver of developmental disorders and cancers, yet the mechanism by which this single-site substitution promotes persistent activation remains elusive. Here, we combine path-based conformational sampling, unbiased molecular dynamics (MD) simulations, Markov state models (MSMs), and neural relational inference (NRI) to elucidate how E76K reshapes the activation landscape and regulatory architecture of SHP2. Using a minimum-action trajectory derived from experimentally determined closed and open structures, we generated representative transition intermediates to guide the unbiased MD simulations.

View Article and Find Full Text PDF

We combined circular dichroism (CD) and viscosity measurements with molecular dynamics (MD) simulations and classification and regression approaches to machine learning to characterize solution structures of 22-mer, 25-mer, and 30-mer peptide- (-GlyArg6) conjugated phosphorodiamidate morpholino oligonucleotides (PPMOs). PPMO molecules form non-canonical folded structures with 1.4- to 1.

View Article and Find Full Text PDF

We present the protolysis-targeting chimera (PROTAC) Conformer Generator, a fast and knowledge-based tool for generating robust conformational ensembles of PROTACs and other chimeric degraders. The modeling protocol integrates conformer generation, rigid-body ternary complex (TC) assembly, and conformational sampling strategies that address the inherent flexibility and complexity of these molecules. Each modeled TC is evaluated using a clash-score and a surface-score, designed to prioritize sterically and geometrically plausible models with favorable protein surface interactions.

View Article and Find Full Text PDF

In living organisms, proteins and peptides are often under the influence of mechanical forces, especially in confined spaces such as membrane channels, the ribosome exit tunnel, or the proteasome gate. Due to the directional nature of proteins as polymers with distinct ends, forces have the potential to influence protein conformational dynamics in a direction-dependent manner. In this study, we employed force-probe molecular dynamics simulations to investigate the impact of pulling a peptide through a confined environment pushing it in the same direction.

View Article and Find Full Text PDF