Are Histidine Kinases of Arbuscular Mycorrhizal Fungi Involved in the Response to Ethylene and Cytokinins?

Mol Plant Microbe Interact

Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, INP Toulouse, 31326 Castanet-Tolosan, France.

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Signals are exchanged at all stages of the arbuscular mycorrhizal (AM) symbiosis between fungi and their host plants. Root-exuded strigolactones are well-known early symbiotic cues, but the role of other phytohormones as interkingdom signals has seldom been investigated. Here we focus on ethylene and cytokinins, for which candidate receptors have been identified in the genome of the AM fungus . Ethylene is known from the literature to affect asymbiotic development of AM fungi, and in the present study, we found that three cytokinin forms could stimulate spore germination in . Heterologous complementation of a mutant strain with the candidate ethylene receptor RiHHK6 suggested that this protein can sense and transduce an ethylene signal. Accordingly, its N-terminal domain expressed in displayed saturable binding to radiolabeled ethylene. Thus, RiHHK6 displays the expected characteristics of an ethylene receptor. In contrast, the candidate cytokinin receptor RiHHK7 did not complement the mutant strain or cytokinin receptor mutants and seemed unable to bind cytokinins, suggesting that another receptor is involved in the perception of these phytohormones. Taken together, our results support the hypothesis that AM fungi respond to a range of phytohormones and that these compounds bear multiple functions in the rhizosphere beyond their known roles as internal plant developmental regulators. Our analysis of two phytohormone receptor candidates also sheds new light on the possible perception mechanisms in AM fungi. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

Download full-text PDF

Source
http://dx.doi.org/10.1094/MPMI-05-23-0056-RDOI Listing

Publication Analysis

Top Keywords

arbuscular mycorrhizal
8
mutant strain
8
ethylene receptor
8
cytokinin receptor
8
ethylene
7
receptor
6
fungi
5
histidine kinases
4
kinases arbuscular
4
mycorrhizal fungi
4

Similar Publications

Arbuscular mycorrhizal fungi distribution responds to ecological damage characteristics in antimony mining ecosystems.

J Environ Manage

September 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China.

The fragmented ecological environment in the mining ecosystem has a significant impact on the microbial community and affects ecosystem stability. Arbuscular mycorrhizal fungi (AMF) facilitate nutrient exchange and element cycling between soil and plants, which play a crucial role in the functionality and stability of soil ecosystems. However, the mechanism of ecological environment factors influencing AMF community assembly in mining areas is still unclear.

View Article and Find Full Text PDF

Nitrogen leaching is a major pathway of nitrogen fertilizer loss. Although arbuscular mycorrhizal (AM) fungi are known to reduce nitrogen leaching by improving plant nitrogen uptake, the soil-based mechanisms remain unclear. A pot experiment was conducted using a randomized complete block design, with four nitrogen levels (0, 3.

View Article and Find Full Text PDF

The utilization of arbuscular mycorrhizal fungi (AMF) and spp. correlates with improved plant nutrition and the stimulation of systemic plant defenses in response to pathogen challenges. Nonetheless, studies examining the effects of AMF colonization and the foliar application of the isolate Tvd44 on viral infection are limited.

View Article and Find Full Text PDF

This study investigates how agricultural disturbance influences arbuscular mycorrhizal (AM) fungal diversity, biomass, and community niche structure. Utilizing niche concepts, we show that the AM fungal communities in intensively managed soils exhibited larger niche volumes and an increased proportion of culturable taxa, which negatively impacted biomass production. This process was primarily driven by the reduction in specialist taxa, indicating a functional homogenization of the community.

View Article and Find Full Text PDF

This study investigated the potential of native arbuscular mycorrhizal fungi (AMF) isolated from organic cassava fields as a biofertilizer, assessing their effects on cassava growth both alone and in combination with plant growth-promoting bacteria (PGPB). AMF spores were isolated from the rhizospheric soil of organic cassava field soils in northeastern Thailand and grouped into two consortia based on spore size: A45 and A75. Molecular identification revealed that both consortia were dominated by the genera Claroideoglomus and Entrophospora, with Paraglomus additionally present in the A45 consortium.

View Article and Find Full Text PDF