A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nanoclusters with specific DNA overhangs: modifying configurability, engineering contrary logic pairs and the parity generator/checker for error detection. | LitMetric

Nanoclusters with specific DNA overhangs: modifying configurability, engineering contrary logic pairs and the parity generator/checker for error detection.

Nanoscale

School of Chemical Science and Engineering, Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, 1239 Siping Rd, Shanghai, 200092, PR China.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The most promising alternative for next-generation molecular computers is biocomputing, which uses DNAs as its primary building blocks to perform a Boolean operation. DNA nanoclusters (NCs) have emerged as promising candidates for biosensing applications due to their unique self-assembly properties and programmability. It has been demonstrated that adding DNA overhangs to DNA NCs improves their adaptability in identifying specific biomolecular interactions. A recent proposal in DNA computing is the concept of "contrary logic pairs (CLPs)" executed by employing a DNA hybrid architecture as a universal platform. We have designed thymine overhang-modified DNA-templated NCs (T-Au/Ag NCs). These NCs serve as a chemosensing ensemble platform, where the presence of Hg ions mediates the formation of M-Au/Ag NCs. The resulting NCs exhibit the capability to drive elementary CLPs (YES, NOT, OR, NOR, INH and IMP) as well as complex logic operations (XOR and XNOR). Additionally, they can be utilized for advanced non-arithmetic DNA logic devices like a parity generator (pG) and a parity checker (pC) for "error detection". Bit errors are an unavoidable and common occurrence during any computing. A cascade of XOR operations was used to evaluate these errors by introducing the pG and pC at the transmitting (TX) and receiving (RX) ends in binary transmission, respectively, which has devastating implications for reliable logic circuits, especially in advanced logic computation. Moreover, an even/odd natural number from 0 to 9 distinguishable pC was designed based on a dual-source responsive computing platform. This work offers inspiring avenues for a cost-effective strategy to construct highly-intelligent DNA computing devices by enhancing the multi-input responsive single DNA platform concept.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr04167kDOI Listing

Publication Analysis

Top Keywords

dna
9
dna overhangs
8
logic pairs
8
dna computing
8
ncs ncs
8
ncs
7
logic
6
nanoclusters specific
4
specific dna
4
overhangs modifying
4

Similar Publications