A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nano-selenium enhances melon resistance to Podosphaera xanthii by enhancing the antioxidant capacity and promoting alterations in the polyamine, phenylpropanoid and hormone signaling pathways. | LitMetric

Nano-selenium enhances melon resistance to Podosphaera xanthii by enhancing the antioxidant capacity and promoting alterations in the polyamine, phenylpropanoid and hormone signaling pathways.

J Nanobiotechnology

Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control & Innovation Center of Pesticide Research, College of Science, China Agricultural University, 2 Yuanmingyuan Western Road, Haidian District, Beijing, 100193, China.

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Powdery mildew is one of the main problematic diseases in melon production, requiring the use of chemical pesticides with disease-resistant cultivars for control. However, the often rapid acquisition of fungicidal resistance by mildew pathogens makes this practice unsustainable. The identification of crop treatments that can enhance resistance to powdery mildew resistance is therefore important to reduce melon crop attrition. This study indicates that the application of Nano-Se can reduce the powdery mildew disease index by 21-45%. The Nano-Se treatment reduced reactive oxygen species (ROS) and malondialdehyde (MDA) accumulation, with increases in glutathione (GSH), proline and 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH). Increases were also observed in the activities and transcriptional levels of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD). Assays with four different cultivars of melon with differing levels of mildew resistance demonstrated that relative to the control, the Nano-Se treatment resulted in larger responses to mildew infection, including increases in the levels of putrescine (PUT; 43-112%) and spermine (SPM; 36-118%), indoleacetic acid (IAA; 43-172%) and salicylic acid (SA; 24-73%), the activities of phenylalanine ammonium lyase (PAL), trans-cinnamate 4-hydroxylase (C4H) and 4-coumarate: Co A ligase (4CL) of the phenylpropanoid pathway (22-38%, 24-126% and 19-64%, respectively). Key genes in the polyamine and phenylpropanoid pathway were also upregulated. These results indicate that the foliar application of Nano-Se improved melon defenses against powdery mildew infection, with a significant reduction in mildew disease development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577987PMC
http://dx.doi.org/10.1186/s12951-023-02148-yDOI Listing

Publication Analysis

Top Keywords

powdery mildew
16
polyamine phenylpropanoid
8
mildew
8
mildew resistance
8
application nano-se
8
mildew disease
8
nano-se treatment
8
mildew infection
8
phenylpropanoid pathway
8
melon
5

Similar Publications