Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Native starches usually have poor polyphenol-binding efficiency despite remarkable architectural structures. In this study, the interaction between cyandin-3-O-glucose (C3G) and three starches under high hydrostatic pressure was investigated. Pressure (200-550 MPa) was found to promote the binding rate of potato starch from 31.6% to 47.0% but reduced that of corn and pea starch to below 10% at 550 MPa. Microscopy results showed that pressurized corn and pea starch-C3G complexes partially or completely lost spatial structures, whereas potato starch-C3G complexes retained structural integrity. The former had decreased zeta potentials and increased particle sizes at 550 MPa, suggesting surface charges and specific surface area losses caused poor binding. Potato starch-C3G complexes, however, exhibited unchanged zeta potential and particle size but the strongest fluorescence at 200 MPa, indicating a positive binding shift from surface to interior. Overall, high hydrostatic pressure can regulate the interactions of native starches with anthocyanins via spatial structural changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.137677 | DOI Listing |