A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Graph structure reforming framework enhanced by commute time distance for graph classification. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As a graph data mining task, graph classification has high academic value and wide practical application. Among them, the graph neural network-based method is one of the mainstream methods. Most graph neural networks (GNNs) follow the message passing paradigm and can be called Message Passing Neural Networks (MPNNs), achieving good results in structural data-related tasks. However, it has also been reported that these methods suffer from over-squashing and limited expressive power. In recent years, many works have proposed different solutions to these problems separately, but none has yet considered these shortcomings in a comprehensive way. After considering these several aspects comprehensively, we identify two specific defects: information loss caused by local information aggregation, and an inability to capture higher-order structures. To solve these issues, we propose a plug-and-play framework based on Commute Time Distance (CTD), in which information is propagated in commute time distance neighborhoods. By considering both local and global graph connections, the commute time distance between two nodes is evaluated with reference to the path length and the number of paths in the whole graph. Moreover, the proposed framework CTD-MPNNs (Commute Time Distance-based Message Passing Neural Networks) can capture higher-order structural information by utilizing commute paths to enhance the expressive power of GNNs. Thus, our proposed framework can propagate and aggregate messages from defined important neighbors and model more powerful GNNs. We conduct extensive experiments using various real-world graph classification benchmarks. The experimental performance demonstrates the effectiveness of our framework. Codes are released on https://github.com/Haldate-Yu/CTD-MPNNs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2023.09.044DOI Listing

Publication Analysis

Top Keywords

commute time
20
time distance
16
graph classification
12
neural networks
12
message passing
12
graph
9
graph neural
8
passing neural
8
expressive power
8
capture higher-order
8

Similar Publications