98%
921
2 minutes
20
Malondialdehyde (MDA) is the dominant component of lipid peroxidation products. Improper storage and transportation can elevate the lipid deterioration MDA content of diets to values that are unsafe for aquatic animals and even hazardous to human health. The study aimed to investigate the effect of dietary MDA on growth performance and digestive function of hybrid grouper (♀ ♂). Six isoproteic and isolipidic diets were formulated to contain 0.03, 1.11, 2.21, 4.43, 8.86 and 17.72 mg/kg MDA, respectively. The study shows that the increased dietary MDA content linearly reduced the growth rate, feed utilization, body index and body lipid content of hybrid grouper, while the low dose of dietary MDA (≤2.21 mg/kg) created no difference. Similarly, dietary MDA inclusion linearly depressed the activities of intestinal digestive and absorptive enzymes as well as antioxidant enzymes, enhanced the serum diamine oxidase activity, endotoxin level and intestinal MDA content. A high dose of MDA (≥4.43 mg/kg) generally impaired the gastric and intestinal mucosa, up-regulated the relative expression of Kelch-like ECH-associated protein 1 but down-regulated the relative expression of nuclear factor erythroid 2-related factor 2 in hindgut. In conclusion, the effect of MDA on hybrid grouper showed a dose-dependent effect in this study. A low dose of dietary MDA had limited effects on growth performance and intestinal health of hybrid grouper, while a high concentration damaged the gastrointestinal structure, depressed the intestinal digestive and antioxidant functions, and thereby impaired the growth and health of hybrid grouper.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571902 | PMC |
http://dx.doi.org/10.3390/ani13193145 | DOI Listing |
Dev Comp Immunol
September 2025
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
Sorting nexin 27 (Snx27), a member of the sorting nexin (SNX) family, plays crucial roles in cell signaling, organelle motility, protein sorting and membrane remodeling/trafficking. While existing studies have focused on the functions of SNXs in mammalian viral diseases and immune regulation, little is known about fish-encoded SNXs, particularly their regulatory roles in aquatic virus infection. In this study, we characterized the Snx27 from the orange-spotted grouper (Epinephelus coioides) and found that it facilitates the in vitro release of Singapore grouper iridovirus (SGIV), as evidenced by the detection of viable virions in the culture supernatants of SGIV-infected grouper spleen (GS) cells.
View Article and Find Full Text PDFBiochem Biophys Rep
December 2025
Guangdong Ecological Meteorological Centre, Guangzhou, 510640, China.
The protogynous orange-spotted grouper (), a sequentially hermaphroditic teleost, relies on dynamic regulation of germ cell development and sex reversal mechanisms to achieve reproductive plasticity. The gene family, pivotal for germ cell development and transposon silencing across metazoans, remains poorly characterized in hermaphroditic species. Here, we investigate , a homologue in the orange-spotted grouper (.
View Article and Find Full Text PDFJ Fish Dis
September 2025
Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong
Vibrio infections cause enteritis in grouper fish, leading to high mortality and stunted growth, which is a major challenge for aquaculture. Oligochitosans, marine prebiotics with bioactive properties, have proven their potential for growth promotion and immune regulation. However, the impacts of Vibrio harveyi on the gut microbiome of grouper fish and the potential of oligochitosans to modulate these effects remain poorly understood.
View Article and Find Full Text PDFAnim Nutr
September 2025
Aquatic Animal Nutrition and Feed Laboratory, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China.
The hybrid grouper () is an important aquaculture marine species in China. The current study was designed to test the effects of methanotroph () bacteria meal (MBM) on hybrid grouper growth and intestinal health outcomes. Five iso-nitrogenous and iso-lipidic diets were formulated, comprising a control diet (MBM0) with 400 g/kg fish meal (FM) as the main protein source, and four experimental diets, in which FM was replaced at 5% (MBM2), 10% (MBM4), 20% (MBM8) and 30% (MBM12) with 20, 40, 80 and 120 g/kg of MBM, respectively.
View Article and Find Full Text PDFSci Rep
August 2025
Research Center for Fishery, National Research and Innovation Agency, Jalan Raya Bogor KM.47, Nanggewer Mekar, Cibinong, 16915, West Java, Indonesia.
The widespread use of antibiotics in aquaculture has become increasingly ineffective due to the emergence of antibiotic-resistant bacteria, residual contamination, the disruption of aquatic microbiota, and international trade restrictions on antibiotic-laden products. As a sustainable alternative, this study investigated the effects of antibiofilm compounds derived from phyllosphere bacteria on the culture performance of juvenile pearl gentian hybrid grouper (Epinephelus fuscoguttatus × E. lanceolatus) challenged with Vibrio harveyi.
View Article and Find Full Text PDF