Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Heat stress can cause intestinal inflammation, impaired barrier integrity, and decreased immunity in poultry. While zinc is known to mitigate the adverse effects of heat stress, how the dietary supplementation of different sources and levels of it can improve the heat stress capacity of Chinese landraces remains unclear. This study investigated Xueshan chickens, which are an important local breed in China. The effects of different levels of ZnS and Zn-Prot M on their intestinal immune function under heat stress were compared. We found that different levels of ZnS and Zn-Prot M could effectively reduce the secretion level of IL-6 in the serum, and 60 mg/kg was optimal. Compared with ZnS, Zn-Prot M significantly increased duodenal villus height and VH/CD ratio, thus Zn-Prot M was more effective than ZnS. Both ZnS and Zn-Prot M significantly down-regulated , , and in 102-day-old duodenum, and , , and in jejunum and ileum at 74, 88, and 102 days old, with 60 mg/kg Zn-Prot M determined as optimal. In conclusion, our study demonstrates that Zn-Prot M is superior to ZnS in improving intestinal immunity in Xueshan chickens, and 60 mg/kg is the optimal addition dose.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571984PMC
http://dx.doi.org/10.3390/ani13193025DOI Listing

Publication Analysis

Top Keywords

heat stress
20
zns zn-prot
16
xueshan chickens
12
intestinal immunity
8
immunity xueshan
8
levels zns
8
mg/kg optimal
8
zn-prot
7
zns
6
heat
5

Similar Publications

Introduction: Fermented buffalo milk products from South Asia remain an underexplored source of microbial diversity with potential health-promoting benefits. This study investigates the probiotic and industrial suitability of lactic acid bacteria (LAB) and non-LAB isolates from traditional Pakistani dairy, addressing gaps in region-specific probiotic discovery.

Methods: Forty-seven bacterial isolates were obtained from fermented buffalo milk products (yogurt and cheese).

View Article and Find Full Text PDF

Most of the United States (US) population resides in cities, where they are subjected to the urban heat island effect. In this study, we develop a method to estimate hourly air temperatures at resolution, improving exposure assessment of US population when compared to existing gridded products. We use an extensive network of personal weather stations to capture the intra-urban variability.

View Article and Find Full Text PDF

The frequency and severity of heat waves are expected to worsen with climate change. Exposure to extreme heat, or prolonged unusually high temperatures, are associated with increased morbidity and mortality. The fetus, infant, and young child are more sensitive to higher temperatures than older children and most adults given that they are rapidly developing.

View Article and Find Full Text PDF

Climatic challenges increasingly threaten global food security, necessitating crops with enhanced multi-stress resilience. Through systematic transcriptomic analysis of 100 wheat genotypes under heat, drought, cold, and salt stress, we identified 3237 differentially expressed genes (DEGs) enriched in key stress-response pathways. Core transcription factors (, , ) and two functional modules governing abiotic tolerance were characterized.

View Article and Find Full Text PDF