Edible Coatings as a Natural Packaging System to Improve Fruit and Vegetable Shelf Life and Quality.

Foods

Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain.

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the past years, consumers have increased their interest in buying healthier food products, rejecting those products with more additives and giving preference to the fresh ones. Moreover, the current environmental situation has made society more aware of the importance of reducing the production of plastic and food waste. In this way and considering the food industry's need to reduce food spoilage along the food chain, edible coatings have been considered eco-friendly food packaging that can replace traditional plastic packaging, providing an improvement in the product's shelf life. Edible coatings are thin layers applied straight onto the food material's surface that are made of biopolymers that usually incorporate other elements, such as nanoparticles or essential oils, to improve their physicochemical properties. These materials must provide a barrier that can prevent the passage of water vapor and other gasses, microbial growth, moisture loss, and oxidation so shelf life can be extended. The aim of this review was to compile the current data available to give a global vision of the formulation process and the different ways to improve the characteristics of the coats applied to both fruits and vegetables. In this way, the suitability of compounds in by-products produced in the food industry chain were also considered for edible coating production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572534PMC
http://dx.doi.org/10.3390/foods12193570DOI Listing

Publication Analysis

Top Keywords

edible coatings
12
shelf life
12
food
8
edible
4
coatings natural
4
natural packaging
4
packaging system
4
system improve
4
improve fruit
4
fruit vegetable
4

Similar Publications

This study characterized agar extracted from Gelidium elegans using ultrasound-assisted extraction (UAE) compared with conventional extraction (CV). The CV yielded significantly higher agar (21.50 %) than UAE (17.

View Article and Find Full Text PDF

Postharvest diseases, driven by necrotrophic fungi such as , , and , pose a significant threat to global fruit and vegetable supply chains, resulting in annual losses of 20%-40% and economic impacts exceeding $10 billion. This review critically evaluates innovative, sustainable strategies for biological control, nanotechnology, edible coatings, and plant growth regulators (PGRs) to mitigate these losses, emphasizing their mechanisms and efficacy. Biological agents like and reduce disease incidence by 60%-85% through volatile organic compounds (VOCs) and nutrient competition.

View Article and Find Full Text PDF

Sustainable, High Barrier Smart Packaging Films for Shelf-Life Extension of Edible Oils.

ACS Appl Bio Mater

September 2025

Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur campus, Saharanpur, 247001, Uttar Pradesh India.

Smart packaging is revolutionizing the food industry by extending shelf life and enhancing quality, thus ensuring food safety and sustainability. This study presents innovative multilayer flexible packaging films to tackle the environmental challenges of single-use plastics and nonrecyclable metalized multilayer films. The fabricated films comprise three layers made up of poly(lactic acid) (PLA), poly(vinyl alcohol)/natural rubber latex, and PLA/Sepiolite clay from inner to outer, respectively, where the active middle layer provides oxygen-scavenging activity.

View Article and Find Full Text PDF

RuBisCO-based protein and film from Rumex patience L.: Effects of green extraction and NADES plasticization on structural and functional properties.

Food Chem

August 2025

Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100, Mersin, Türkiye. Electronic address:

Growing interest in sustainable food packaging has driven the development of bio-based films from underutilized plant proteins. Rumex patientia L. (edible dock), a perennial leafy plant rich in RuBisCO, represents a promising yet largely untapped source of functional film-forming proteins.

View Article and Find Full Text PDF

The fruit and vegetable (F&V) waste generated postharvest has the potential of being used for the recovery of bioactive compounds that can be reintroduced into the supply chain to extend the postharvest quality of fresh produce. This review provides in-depth insights into the potential use of natural extracts derived from F&V waste to maintain the commercial and nutritional quality of fresh F&V. The mechanisms of action are comprehensively discussed.

View Article and Find Full Text PDF