Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this paper, a Cu-Ni-Cr alloy was prepared by adding a Ni-Cr intermediate alloy to copper. The effects of the cold rolling reduction rate on the microstructure and properties of the Cu-1.16Ni-0.36Cr alloy after thermo-mechanical treatment were studied. The results show that the tensile strength of the alloy increased while the electrical conductivity slightly decreased with an increase of the cold rolling reduction rate. At a rolling strain of 3.2, the tensile strength was 512.0 MPa and the conductivity was 45.5% IACS. At a rolling strain of 4.3, the strength further increased to 536.1 MPa and the conductivity decreased to 41.9% IACS. The grain size and dislocation density decreased with an increase of the reduction rate in the thermo-mechanical treatment. However, when the rolling strain reached 4.3, the recrystallization degree of the alloy increased due to an accumulation of the dislocation density and deformation energy, resulting in a slight increase in the grain size and a decrease in the dislocation density. The texture strength of the brass increased due to the induced shear band, with an increase of the cold rolling reduction rate. The reduction rate promoted a uniform distribution of nano-scale Cr precipitates and further enhanced the strength via precipitation strengthening.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10573223 | PMC |
http://dx.doi.org/10.3390/ma16196508 | DOI Listing |