98%
921
2 minutes
20
The persistent pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants accentuates the great demand for developing effective therapeutic agents. Here, we report the development of an orally bioavailable SARS-CoV-2 3C-like protease (3CL) inhibitor, namely simnotrelvir, and its preclinical evaluation, which lay the foundation for clinical trials studies as well as the conditional approval of simnotrelvir in combination with ritonavir for the treatment of COVID-19. The structure-based optimization of boceprevir, an approved HCV protease inhibitor, leads to identification of simnotrelvir that covalently inhibits SARS-CoV-2 3CL with an enthalpy-driven thermodynamic binding signature. Multiple enzymatic assays reveal that simnotrelvir is a potent pan-CoV 3CL inhibitor but has high selectivity. It effectively blocks replications of SARS-CoV-2 variants in cell-based assays and exhibits good pharmacokinetic and safety profiles in male and female rats and monkeys, leading to robust oral efficacy in a male mouse model of SARS-CoV-2 Delta infection in which it not only significantly reduces lung viral loads but also eliminates the virus from brains. The discovery of simnotrelvir thereby highlights the utility of structure-based development of marked protease inhibitors for providing a small molecule therapeutic effectively combatting human coronaviruses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575921 | PMC |
http://dx.doi.org/10.1038/s41467-023-42102-y | DOI Listing |
Pestic Biochem Physiol
November 2025
State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China. Electronic address:
Potato virus Y (PVY) is one of the most economically detrimental phytoviruses affecting global Solanaceae, possessing challenges in agrochemical control. The structural elucidation of PVY coat protein (CP) offers opportunities for the rational design of CP-targeted antivirals; however, the feasibility of identifying lead compounds via virtual screening remains largely unexplored. Herein, we report the successful case of structure-based virtual screening leveraging PVY CP, enabling the identification of a structurally novel lead with a unique mechanism of action.
View Article and Find Full Text PDFComput Biol Chem
August 2025
Department of Green Chemistry, National Research Centre, Dokki, P.O. Box 12622, Cairo, Egypt. Electronic address:
This review meticulously examines the development, design, and pharmacological assessment of both well known antiviral and antihypertensive medications all time employing new chemical techniques and structure-based drug design to design and synthesize vital therapeutic entities such as aliskiren (renin inhibitor), captopril (a2-ACE-Inhibitor), dorzolamide (inhibitor of carbonic anhydrase) the review demonstrates initial steps regarding the significance of stereoselective synthesis, metal chelating pharmacophores, and rational molecular properties. More importantly, protease inhibitors (i.e.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:
The nucleotide excision repair (NER) pathway in Mycobacterium tuberculosis (Mtb) is important for DNA damage repair and bacterial survival under stress, yet specific inhibitors targeting its components remain scarce. Here, we targeted the UvrB protein, a central component of the Mtb UvrABC NER pathway, and identified novel small molecule inhibitors against its nucleotide binding domain (NBD). Using in silico structure-based screening involving the Maybridge library (~54,000 compounds), Molecular dynamics (MD) simulations, and Biolayer interferometry (BLI), we identified four potent inhibitors: SPB08143, RJC04069, NRB00936, and DP00786 with IC50 values of 9.
View Article and Find Full Text PDFBioorg Med Chem
August 2025
Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China. Electronic address:
The delta opioid receptor (DOR) is a promising target for developing analgesics with fewer side effects compared to mu opioid receptor (MOR) agonists. However, non-peptidyl DOR-selective agonists remain limited. Using the "message-address" concept in opioid ligand design, we designed and synthesized a series of para-substituted N-cyclopropylmethyl-7α-phenyl-6,14-endoetheno-tetrahydronorthebaines to explore their binding affinity and selectivity for DOR over MOR and kappa opioid receptor (KOR).
View Article and Find Full Text PDFJ Phys Chem B
September 2025
State Key Laboratory of Porous Materials for Separation and Conversion, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China.
Ras is a node protein in the classic tumor signaling pathway known as RAS-RAF-MEK. Mutations in Ras are reported to occur in approximately 19% of human cancers. Among them, the G12D mutation is one of the most prevalent mutations found in Ras.
View Article and Find Full Text PDF